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PREFA CE.

A PLAN for constructing an Iron Bridge of one arch, to be erected
over the River Thames, designed by Messrs. Telford and Douglass,
and proposed to the Committee of the House of Commons for the
further Improvement of the Port of London, has excited consider-
able attention, both from the novelty and magnitude of the design,
and the evident advantages to navigation which would attend such
a structure ; yet as some doubts arose respecting the practicability
of erecting such an edifice, and the prudence of attempting it, the
Committee judged it necessary for their own information, as well as
to furnish the House with some grounds by which an opinion might
be formed, to propose the following Queries, which were therefore
transmitted, together with the engraved designs of Messrs. Telford
and Douglass, and the explanatory drawings annexed, to such
persons as were supposed to be most capable of affording them
information.

The following are the Queries that were drawn up and iransmittzd to the Persons
whose Names are undermentioned. (See Page vi.)

QUERIES.

I. What parts of the arch are to be considered as wedges, which act on
each other by gravit).r. and preséuré, and what part"merely as weight,
acting by its .gravity' only, similar to the walls and other loading com-
monly erected on the arches of stone bridges ; or does the whole act

a2
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as one frame of iron, which cannot be destroyed but by crushing its
parts ?

Query I1. Whether the strength of the arch is affected, and in what manner, by
the proposed increase of its width towards the two extremities or abut-
ments, when considered both vertically and horizontally ; and if so,
what form should the bridge gradually acquire ? ‘

III. In what proportion should the weight be distributed, from the centre
to the abutments, to make the arch uniformly strong?

1V. What pressure will each part of the bridge receive, supposing it
divided into any given number of equal sections, the weight of the middle
‘section being known ; and on what part, and with what force, will the
whole act upon the abutments?

V. What additional weight will the whole bridge sustain, and what will
be the effect of a given weight placed on any of the fore-mentioned
sections ? ' ]

VI. Supposing the bridge executed in the best manner, what horizontal
force will it require, when applied to any particular part, to overtura it,
or press it out of the vertical position ?

YII. Supposing the span of the arch to remain the same, and to spring ten
feet lower, what additional strength would it give to the bridge; or,
making the strength the same, what saving may be made in the mate-
rials ; or, if instead of a circular arch, as in the Print and Drawings, the
bridge should be made in the form of an elliptical arch, what would be
the difference in effect as to strength, duration, and expense?

VIII. Is it necessary or adviseable to have a model made of the proposed
bridge, or any part of it, of cast iron; if so, what are the objects to
which the experiments should be directed, to the equilibration only, or
to the cohesion of the several parts, or to both united, as they will occur
in the iron work of the intended bridge ?

IX. Of what size ought this model to be made, and in what relative
proportion will experiments on the model bear to the bridge when
executed ?

X. By what means may ships be best directed in the middle stream, or
prevented from driving to the side, and striking the arch ; and what is the

_ probable consequence of such a stroke ?
XI. The weight and - lateral pressure of the bridge being given, can
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abutments be made in the proposed situation, for London Bridge to resist
that pressure ?

Query XII. The weight of the whole iron work being given, can a centre or
scaffolding be erected over the river, sufficient to carry the arch, without
obstructing those vessels which at bresent navigate that part?

XIII. Whether would it be most adviseable to make the bridge of cast
and wrought iron combined, or of cast iron only; and if of the latter,
whether of the hard and white metal, or of soft grey metal, or of gun
metal ? h ] .

XIV. Of what dimensions ought the several members of the iron work to
be made, to give the bridge sufficient strength ?

"X V. Can frames of iron be made sufficiently correct to compose an arch
of the form and dimensions as shewn in the Drawings No. 1 and 2, so
as to take an equal bearing in one frame, the several parts being con-
nected by diagonal braces, and joined by iron cement, or other substance?
N. B. The Plate XXIV. in the Supplement to the Third Report, is
considered as No. 1.

XVI. Instead of casting the ribs in frames of considerable length and
breadth, as shewn in the Drawings No. f and 2, would it be more ad-
viseable to cast each member- of the ribs in separate pieces of considerable
length, connecting them together with diagonal braces, both horizontally
and vertically, as in No. 3.?

XVII. Can an iron cement be made that will become hard and durable;
or could liquid iron be poured into the joints ?

XVIII. Would lead be better to use in the whole, or any part, of the
joints? v

XIX. Can any improvements be made upon the Plans, so as to render the
bridge more substantial and durable, and Jess expensive ; if so, what are
those improvements ?

XX. Upon considering the whole circumstance of the case, agreeably to
the Resolutions of the Select Committee, as stated at the conclusion of
their Third Report,* is it your opinion, that an arch of 6oo feet span,

* The Resolutions here referred to are as follow ¢

That it is the opinion of this Committee, that it is essential to the improvement
and accommodation of the Port of London, that London Bridge should be rebuilt,

on such a construction as to permit a free-passage, at all times of the tide, for ships
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as expressed in the Drawings produced by Messrs. Telford and Douglass,
on the same plane, with any improvements you may be so good as to
point out, is practicable and adviseable, and capable of being rendered'a
durable edifice ?

Query XXI. Does the Estimate communicated herewith, according to your judg-
ment, greatly exceed, or fall short of; the probable expence of executing
the Plan proposed, specifying the general grounds of your opinion ?

Alfter paying every attention to the subject which the importance
of it demanded, it appeared for many reasons absolutely necessary,
for furnishing satisfactory answers to the above Queries, to inves-
tigate the properties of arches from their first principles. The
substance of these properties is comprised in a Tract, entitled a
Dissertation on the Construction and Properties of Arches, pub-
lished in the year 1801, and continued in the present Treatise, now
offered to the Public as a Supplement to the former Tract. The

of such a tonnage, at least, as the depth of the river would admit at present, be-
tween London Bridge and Blackfriars Bridge.

That it is the opinion of this Committee, that an iron bridge, having its centre
arch not less than 65 feet high in the clear above high-water mark, will answer
the intended purposes, with the greatest convenience, and at the least expense,

"That it is the opinion of this Committee, that the most convenient situation for
the new bridge will be immediately above St. Saviour’s Church, and upen a line
leading from thence to the Royal Exchange. *

ANSWERS BY

1. Dr. Maskelyne, 1o. Mr. Rennie,

2. Professor Robertson, < 11. M. Watt,

3. Professor Playfair, _ 12. Mzr. Southern,

4. Professor Robeson, 13. Mr. Reynolds,
5. Dr. Milner, 14. Mr. Wilkinson,
6. Dr. Hutton, 15. Mr. Bage,

7. Mr. Atwood, 16. General Bentham,
8. Colonel Twiss, 17. Mr. Wilson.

9. Mr. Jessop, , ‘

* See the Report from. the Select Committee upon the Improvement of the Port of
London. © ' ‘ ‘ o - : v
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reader will perceive that most of the propositions in these Dis-
sertations are entirely new, and that they have been verified and
confirmed, by new and satisfactory experiments, on Models con-
structed in brass by Mr. Berge of Piccadilly, whose skill and
exactness in executing works of this sort are well known to the
Public. Considering the importance of the subject, and the di-
versity of opinions which has prevailed respecting the construc-
tion of arches, and the principles, on which they are founded, it
seems requisite, that the final determination of the plan for erecting
the bridge of one arch in -question, should be subjected to a
rigorous examination, in order to discover if any, and what, errors
might be found in them. The best means of effecting this ap-
pears to be by a publication, in which the propositions recom-
mended for adoption being fairly stated, every person, who is of a
different opinion, may have an opportunity of explaining his ideas
on the subject, and of suggesting any different- modes of construc-
tion, that are judged to be less liable to objection. To persons
interested in these inquiries, it may be satisfactory to be informed,
that the properties of arches, which are comprised in this latter
Tract, have been found, on a careful and minute examination, and
comparison, in no instance inconsistent with those, which are the
subject of investigation in Part the First, but rather appear to
strengthen and confirm the theory before published, allowing for
the differences in the initial force or pressure, expressed in page 2,
and in Figs. I and 2, inserted in this Tract, representing the diffe-
rent dispositions of the key-siones, from whence conclusions arise
very different from each other, although all of them are strictly
consistent with the laws of geometry and statics. It is particularly
observable, that the deductions of the weights and pressures arising
from a suppositioni of a single key-stone, do not exhibit conclusions
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which are strictly true, but require the addition or subtraction of
certain differences* to make them consistent : whereas on the more
correct supposition of two key-stones, corresponding with the case,
in which the initial pressure is in a direction parallel to the hori-
zon, the conclusions derived from this principle are geometrically
true, requiring no. correction or alteration whatever ; being in
themselves certain and unalterable propositions. Praetical infer-
ences may be deduced from adopting either the principle' of a
single key-stone, or the more correct one of two equal key-stones,
the differences, which are the consequences, whether subtractive, or
additive, being so extremely minute as not to-be made sensible in
practice. With respect to the principal object of these inquiries,
those which are expressed in the 19th and 20th Queries, deserve
particular attention. -

¢ Can any improvements be made upon the Plans, so as to ren-
* der the bridge more substantial and durable, and less expensive;
“ if so, what are those improvements ?”

“ Upon considering the whole circumstance of the case, agree-
“ably to the resolution of the.Select Committee, as stated at the
¢ conclusion of their Third Report, is it your opinion that an arch of
* 600 feet span, as expressed in the drawings produced by Messrs.
« Telford and Douglass, on the same plan, with any improvement
‘“ you may be so good as to point out, is practicable and adviseable,
« and capable of being a durable edifice ?”

It seems probable that the best plan of rendering the bridge a
substantial and durable edifice, would be by making the weights
of the several sections, such as those plans which are numerically
expressed in Tables No. V, V1, VIII, IX, annexed to Part Il. in
this Treatise, and their pressures on the abutments, balance each

* See Table VI. at the end of Part the First.
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other, so that the whole building, when erected, may have a dis-
position to remain at rest; which will be the property of all the
structures of arches, which are numerically expressed in the Tables,
that are subjoined both in the First and Second Part of this Trea-
tise. In some of the plans, particularly those which are drawn in
a circular form, inconveniences arise from the figure thereof, that
render them unfit to be adopted for the purpose of erecting a
bridge : to obviate this difficulty it might be advisable, that the
curve of the arch should not be formed of a circular or other spe-
cific figure, but that the line coinciding with the road-way might
be either rectilinear, or a curve not greatly deviating from a right
line, so that if the bridge should be constructed according to any
of the plans pointed out in the preceding pages, the advantages
therein proposed, would be realized, without the inconveniences
arising from a circular form. '

It may be considered as a matter of surprise, that on a subject
so truly experimental as the construction of arches appears to be,
so very few accounts of original experiments on the subject are to
be found, in the philosophical transactions of this or other countries
of Europe, or in the literary publications which have appeared in
the world during the last and preceding centuries; it possibly may
be objected against placing any reliance on expuriments of this
sort, that they are formed on a supposition, that o impediment is
caused by friction, cohesion, and tenacity of the surfaces in con-
tact; whereas in reality those powers operate in preventing the
surfaces from freely sliding over each other, and consequently an
adequate allowance ought to be made on this account in forming
inferences from these experiments: but it seems certain, that in
whatever degree friction, and the other impediments to motion,
may act on the models, it is by rendering the whole structure

b
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more secure from disunion. The effects therefore of similar or
other impediments, such as may be supposed to take place in the
construction of real bridges, will have a much greater effect
when they consist of iron braces and fastenings of various kinds
by which. all efforts to disunite the sections are immediately
counteracted. : .

The effects of this will be not only to prevent the separation of
the sections by any casual force, tending to disunite them, but will
likewise secure the edifice from the more silent, but not less destruc-
tive assaults of time : for when the sections of an arch are not duly
balanced, every heavy weight which passes over the road-way,
even the motion of a lighter carriage, must create a tendency to
separate the sections by degrees, and at length entirely to disunite
them ; an evil to be remedied only by a requisite equilibration of
parts of the bridge.

On a review of the whole, whether the subject is considered theo-
retically, as depending on the laws of motion, or practically, on the
construction of models erected in strict conformity to the theory,
it would seem difficult to suppose, that any principle for erecting
a bridge of one arch would be adopted, that is very different from
those, that have been the subject of the preceding pages: never-
theless, as the most specious theories have been known to fail, when
applied to practice, in consequence of very minute alterations in the
conditions; and as it is scarcely possible to frame experiments ade-
quate to the magnitude of the intended structure, the Author of this
Treatise thinks it incumbent upon him to state freely the doubts
which remain upon his mind, respecting the construction of the
bridge intended ; suggesting, at the same time, such ideas, as have
occurred to him, which probably may contribute to remove or to
explain those doubts ; particularly by causing an arch to be erected,
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the span of which is from 20 to 50 feet, the expense of which would
be of little moment in the case of its success; and, on a supposi-
tion, that the experiment should fail, the important consequences
that would probably arise from the observation of such a fact
would, in the opinion of many persons, amply compensate for
its failure. A doubt occurred during the construction of the flat
arch,™ whether the angles at the summit were most conveniently
fixed at 2° 38’ 0”, or whethér those angles should not subtend 5°,
10°, 15%, or any other angles, which might better contribute to the
strength and stability of the entire structure. Since the materials,
of which the Models are formed, are of a soft and elastic nature,
which yields in some degree to the force of pressure; this circum-
stance, joined to that of making the angle subtended at the centre
of the circle no greater than 2° 38 0", prevents these sections from
having much hold on the contiguous sections above them, and
creates some difficulty and attention in adjusting the Model No. 2,
to an horizontal plane, suggesting the necessity of forming the
angles of the first or highest sections at 5°, or some greater angle,
by which the holdings would be more effectually secured ; but it
is to be remembered, that this source of imperfection could not
exist if the sections were made of materials perfectly hard and
unelastic; and the Model having been constructed as an expe-
riment, it seems proper that the angles of the first sections should
be formed on the smallest allowable dimensions, in order to .0b-
serve more distinctly the advantages which would arise from
making the angles larger in any subsequent experiment, if any
should be approved of, previously to a final determination of the
plan to be adopted for erecting the iron bridge. It is to be

* The Model No. z, so called to distinguish it from the Model No. 1, in the form of
a semicircular arch. ‘
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observed, that no imperfection of the kind which is here spoken of,
takes place in the Model of the arch No. 2, after it has been care-
fully erected : but a larger angle seems to be preferable for the
angles of the first sections, from the difficulty which subsists, at
present, in adjusiing the Model of the arch No. 2, to the true
horizontal plane, so much exceeding the trouble and attention in
adjusting the Model No. 1. /

Many thanks and acknowledgments are due to Mr. Telford and
several other engineers, who have had the goodness to favour the
Author with their able advice and assistance, in answering such
questions as he had occasion to propose to them, respecting the ori-
ginal plan of this Treatise, and subsequently concerning the prac-
tical experiments, accounts of which are contained in it.

G. A.

London,
29th November, 1803.



A

DISSERTATION

ON THE

CONSTRUCTION AND PROPERTIES
OF ARCHES.

PART II.

T sz sections or portions of wedges which constitute an arch may
be disposed according to two several methods of construction,
which are represented by Fig. 1 and Fig. 2. In Fig. 1 the highest
section, or key-stone, is bissected by the vertical plane VO, which
divides the entire arch into two parts, similar and equal to each
other. In Fig. ¢, fwo highest sections A, A, similar and equal to
each other, are placed contiguous and in contact with the vertical
Iine VO. The former plan of construction has been before the
subject of investigation, in a tract on arches, and published in the
year 1801. It remains to consider the properties which result
from disposing the sections according to the last-mentioned plan
in Fig. e. :

The first material circumstance which occurs is the difference
in the direction of the initial pressure, which in’the former case,
Fig. 1, was inclined to the horizon in the direction EQ perpendi-
cular to AB; whereas, accordin g to the latter disposition, Fig. e,
of the key-stone, the initial pressure is parallel to the horizon in

B
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the direction QR. 1In any arch of equilibration in which two equal
and similar sections occupy the summit of the arch, the initial
force or pressure is parallel to the horizon, and is to the weight
of the first section as radius is to the tangent of the angle of that
section.

For let the two highest equal sections, A, A, be represented by
Fig. 3, when they form a portion of an arch of this description ;
let Vo T a represent one of these equal highest sections. Through
any point Q, of the line VO, draw QP perpendicular to the line
TO, QR parallel, and PR perpendicular, to the horizon ; then will
the three forces, by which h the wedge A is supported in equilibrio,
bé represented in quantity and direction, by the lines QP, OR,
and PR; of which, QP denotes the pressure between the surface
TO and the surface of the section B, which is contiguous to it.
QR is the force which acts in a direction parallel to the horizon,
and is counterbalanced by the reaction of the other section A,
similar and equal to the former : and PR measures the weight of
the section A. Because PQR is a right-angled triangle, the follow-
ing proportion will be derived from it : as the horizontal force OR
is to the weight of the section A, or PR, so is radius or QR to PR.
The tangent of the angle PQR = VOT, which being equal to the
angle contained by the sides Vv,aT of the ‘wedge A, may be de-
noted by A°: finally, if the Welght of the section A be put equal

to w, we shall have the horizontal force at the summit of the arch

i w —— © . . ] —_— . .
= g A — W x cotang. A’, radius being = 1; from this deter-

mination the following construction is derived: having given the
several angles of the sections A°, B°, C°, D°, together with the
weight of the first section, A; to ascertain by geometrical con=-
struction, the weights of the successive sections B, C, D, &c.
when the arch is balanced in equilibrio. Aa, AB, BC, CD, &c.
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represent the bases of the sections in Fig. 4,: through the points
A, B, C, D, &c. draw the indefinite lines Ag, Bb, Cc, D4, &c.
perpendicular to the horizon ; through any point X, in the line
AF, draw the indefinite line XZ parallel to the horizon; let Aa
denote the weight of the section A; and through the point «
draw a %, at right angles to AF; and in the line XZ take a part
XM, which shall be to the line A4 as radius is to the tangent of
the angle VOF or A”; so shall XM represent, in quantity and
direction, the pressure between the first section A and the vertical
plane VO; or, when both semiarches are completed, the line XM
will represent the pressure between the contiguous vertical sur-
faces of the two highest sections A, A. Through the point M
draw MRV perpendicular to OF ; and in this line produced, take
MN = to za; and make QV ==to RN, which will be to radius,
as radius is to the sine of VOA or A°.. For because the line XM
is to A as radius is to the tangent of VOA or A°; if the sin.
of A° be put =, and the cos. A°= ¢ to radius 1, this will give

R"MV._. A“sx Z, and. because MN =122 = A)z xs' *arid RM
— ACX RM | MNor RN = A2x5¥7
quantlty is to radius, as radlus is to the sin. of VOA or A" and VO

or RN = -5—. is the measure of the entire pressure on the abut-
ment OF.

To-construct the welght of the sectxon B, and the pressure on
the next abutment-OG, through the point Q, draw KT perpendi-
cular to GS;and. from any point B, in the line BG, set off Bz =
toVS: through the point % draw zb perpendicular to G b cutting
off B, which will be equal to the measure of the weight of the sec-
tion B; from the point Q in the line KT produced set off QT =to

Be
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#b: also in the line KT, make Kx = to ST, then K= or ST is the
measure of the pressure on the abutment OG of the section C. On
the same principles, the weights of the sections C and D, as well as
of the sections following, are geometrically constructed, Cz being
set off = VV.K, and Dz =to 1l; from this construction, when
completed, the general expressions for the weights of the sections
are inferred, which are inserted in the 1gth and 14th pages in the
former tract, except that the initial pressure, arising from a diffe-
rent disposition of the key-stone, represented in Figs. 1 and ¢, in
consequence of which the initial pressure is p’ = w x cotang. A°,

instead of p = ;—x—f — in the former tract..

In this manner the weights of the several sections and pres-
sures on the abutments, are found to be as underneath.

Sect- Welghts of the sections on the

ions, _ vertical abatments, . Pressures. .
T Pp'=w x cotang. A®
A—=w p=p'x cos. A’ 4 p'x sin. A® x tang. V*

—pxsm B” x sec. V2 g =p x cos. B’ 4 p x sin. B’ x tang. V*
C=g¢xsin. C’ x sec. V* - r= g x cos. C° + ¢ x sin. C° x tang. V*
D=r xsin.D° xsec. V4 5= r x cos. D°+ 7 x sin. D° x tang. V¢
E=s xsin. E>xsec. V¢ ¢t = s xcos.E* + s x sin. E° x tang. V*

Wheh the ahglés of these sections are equal to each other, and
consequently A° = B*=C°"= D°; &c. in this case, the angles of
the abutments will be as fo]lows, Ve= A%, VP = 2A°, Ve = gA°,
and so on.

On these conditions, the weight of each individual section, as
well as the pressures on the corresponding abutments, and the
weights of the semiarches, may be inferred by the elementary rules
of trigonometry, from the general expressions above inserted.

Weights of the sections, and the pressures on the corresponding
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abutments, when the angles of the sections are equal each, and
=to A>, sin. of each angle =5, cos. = ¢, radius =1.

Pressures on the lowest surface of each section.

’ ¢ °
—_— - - - =cotang. A
Welghts of the sections., s g
A=1 . . . . . p==x— . . =—cotang.Axsec. A
. ) ¢ '
I .

B —zc_x e q_—_—_—i. X —— . . ==cotang.Axsec. 2A
C —- LA L or=.c ! —cotang. A x sec.3A

2071 X 46*—3 s X o3 g 3
D= - . S —

TN T T S= 4 X gaTEn =cotang. A xsec.4A
E = : =< :

£ s * Y6c

=cotang. A xsec.5A

166*+—200* f-§ X 8ct— 86?41 m
Sums of the weights of the sections, or weights of the semi-
arches, when the angles of the sections are equal to each other,
and = to A’, sin.. A° =, cos. A° = ¢, radius = 1.
Sums of the weights.

A=1. . . . . . .1 . . ==cotang. A xtang. A
A+B . . . . .= chi == cotang. A x tang. 2A
A4B4+C . . . = :z::; ==cotang. A x tang. gA

A+B4+CHD . =$§l;—}c_—:—l == cotang. A x tang. 4A.

A+B+C'+D+E::—Zggg{%-:cotano.Axtang. 5A.

When the angles of the sections, instead of being equal to each
other, are of any given miagnitude, the gemeral demonstration of
the weights of the sections, when adjusted to equilibration, and
the corresponding pressures on the abutments, will require further
examination of the principles on which the construction is formed;

- with the aid of such geometrical propositions as are applicable ta,
the subject.



£61

To consider, first, the pressures on the successive abutments
which are, according to the construction, OV, OF, OG, OH, &c.
it is to be proved, that the pressure on the vertical abutment
OV = cotang. A°: the pressure on the abutment OF = co-
tang. A° x sec. A; the pressure on OG = cotang. A’ x sec.
A°+ B°; and the pressureon OH = cotang. A°® x sec. A’+ B*+ C°,
and so on, according to the same law of progression ; radius being
= 1, the weight of the first section being also assumed = 1; if
the weight of the first section should be any other quantity w, the
pressures inferred must be multiplied by w. |

The vertical line OV being parallel to the several lines Aa, Bbs
Cc, Dd, &c. it appears that the angle zAa =FOV = A®, also zBb
= GOV = A° + B°, 2Cc =HOV=A"4 B° 4 C°, 2Dd = A"
-+ B’ 4 C° + D°, likewise the angle XMV = A”, VQK B,
Kzl =C°, INII = D°, &c. - ‘

From these data the followmg determinations are obtained;
the entire pressure QV on the abutment OF, consists of two parts,
namely, RM = the wedge pressure ; secondly, MN = za, which
is that part of weight of the section A resting on the abutment
FA, which is to the whole weight as za is to Aa, or as the sine of
the angle A° is to radius: the entire pressure therefore upon
OF = RM 4 MN: but MR = MX x cos. A, and MN = za
x tang. A to radius zA = sin. A: the pressure, therefore, on

Aaxcos.?A . Aa xm sin, *A

thehneOF__—-s—lE-K——+Aaxsm A = ————
- Aa - Aa

== but ——==cotang. A x sec. A; we have therefore ar-

rived at the following determination : the entire pressure on the
abutment OF = cotang. A° x sec. A, when the weight of the
first section is assumed = 1, 2
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The pressure on the abutment OG, ‘that is 2K, is to be proved
= cotang. A x sec. A° + B

~ The pressure QV on the abutment preceding, or OF, has been
shewn = cotang. A° x sec. A; but as the angle VQK =B,
follows that QS = cotang. A° x sec. A® x cos. B, and VS = co-
tang. A x sec. A°x sin. B®; but by the construction VS = Bz: there-
fore Bz = cotang. A°x sec. A° x sin. B°: and because the angle
2Bb = A4 B, 2b is to Bz (cotang. A° x sec. A° x sin. B°)
as tang. A° 4 B°is to radius: the result is, that zb = cotang.
A x sec. A x sin. B x tang. A* - B°: and since SQ = cotang. A°
x sec. A x cos. B%; it follows that the entire pressure on OG = SQ
—+ QT = KQ = cotang. A° x sec. A° x cos. B’ } cotang. A x sec.
A’ x sin. B° x tang. A° 4 B°.. The subsequent geometrical propo-
sition will verify this construction, and prove at the same time, the
relation, in general, of the successive secants of the angles which
ate proportional to the entire pressures on the successive corre-
sponding abutments.

Given any angle of an abutment A®, and the angle of the sec~
tion B® next following, it is to be proved that sec. A® is to sec.
AFB as 1is to cos. B 4 sin. B x tang. A + B. That is, from
the conditions given,

.Sec A® x cos. B 4 sec. A”x sin. B° x tang. A® - B° = sec. A -} A+ B
~ From the elements of tn.gonometry, cos. B + sin. B x tang.

Ty . sin. A+ B cos. A+ B » cos.Bsin. Bxsin. A+ B
A—}-B._cos.B-]--sm.B><cosA+B o ATE

A+ B—B__ <54 . thereforecos. B -} sin. B x tang. A+ B
cos. Ay B " cos. ALB

= _Cﬁi‘__é.._g : multiply both sides by sec. A, the result will be: sec. A

cos. A +

. . e LA A ————
x cos. B+ sec. A x sin. B xtang. A4-B =C_°_s_1’<_'s§f§__:—_sec.A B.
. ] COs. .
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This proposition may be extended to ascertain, generally, the
proportion of the successive secants in an arch of equilibration, by
supposing an angle of an abutment M" to consist of the angles of
several sections, such as A°, B°, C°, D°, E°= M, if an additional
section F* is next in order after E°; so that the whole arch may
consist of sections, the sum of the angles of which = M° - F°,
then it is to be proved that the secant of M", is to the secant of

M° 4 F°, as 1 to cos. F 4 sin, F° x tang, M° F F°, or sec.
M° x cos. M° 4 sec. M°® x sin. F° x tang. M + F° = sec.
By the elements of trigonometry, cos. F 4- sin. F x tang. M 4 F-

—

— COS. F'-[-sin. Fxsin.M+F=cos.Fxcos.M+F+sin.Fxsin.M+F
cos. M4+ F cos. M + F

cos. M4+ F—F __ cos. M
cos. M + F cos. M+ F*

Multiply both sides of the equation by sec. M, the result will be
sec. M x cos. F 4 sec. M x sin. F x tang. M  F =
= sec. M 4 F.

Thus the relation of the successive secants of the angles be-
tween the vertical line and the lowest surface of each section in

or cos. F 4 sin. Fx tang. M | F =

sec. M x cos. M
cos. M 4 F

any arch of equilibration is demonstrated, in general, and the
measure of the pressures on the abutments proved to be equal to
the weight of the first or highest section x cotang. A° x sec. of the
angle of that abutment : and, in general, any sec. of an angle of an
abutment is shewn to be to the sec. of the angle of an abutment next
following, in the proportion as 1 is to cos. of the angle of the
section -} sin. of the same angle x tang. of the sum of the angles
from the summit of the arch to the abutment,

The ensuing geometrical proposition is intended to investigate
the weights of the individual sections in an arch of equilibration :
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also to infer the sums of the weights of the sections which form the
respective semiarches. A, B, C, D, Fig. 6. is a circular arc drawn
from the centre O and with the distance OA. The arc AB = A®,
AC=DPB’, AD=C"; AG is drawn a tangent to the circle at the
point A ; through the centre O and the points B, C, D draw the
lines OBE, OCF, ODG: then the line AE will be a tangent to
the arc AB, AF will be a tangent to the arc AC, and AG will be
a fangent to the arc AD; through the points B, C, D draw the
lines BH, CI, DK perpendicular to the line OA ; then will BH
be the sin. and OH the cos. of the arc AB = A°, CI and OI the
sin. and cos. of the arc AC = B°and DK = the sin. and OK the
cos. of the arc AD == C° through C draw CM perpendicular to
OL, so shall CM be the sin. of the arc CB. _
The following proposition is to be proved : the difference of the
tangents of the arcs AC and AB, or the line FE, is to the line CM,
or the sine of the difference of the same arcs, so is 1 to the rect~-
angle under the cosines of AB and AC, or OH x Ol: the demonstra-

. . . sin. AB
tion follows, radius being == 1; the tangent of thearc AB= ——=,
sin. AC

——=~~. therefore the difference of the
cos. AC :

and tang. of the arc AC =
sin. AC sin. AB__ sin. AC % cos. AB~-sin. AB x cos. AC |
tang' of ABand AC ~=cos.AC  cos. AB cos. AB x cos. AC 4

but the sin. of AC x cos. AB — sin. AB x cos. AC = sin. AC — AB

~— the sin. of the difference of the same arcs = CM; therefore

CM
cos. AB x cos. A

the difference of the tangents EF = =3 which equa-

tion being resolved into an analogy, becomes the following pro-
portion : as the difference of the tangents FE is to the sine of the

difference of the arcs sin. AC — AB, so is radius 1 to the rectangle
under the cosines OI and OH, which is the proposition to be
proved.

C
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Since it has been shewn in the pages preceding, that the pres-
sure on each abutment is w x cotang. A°x sec. of the angle of that
abutment, the pressures on the several sections will be expressed
as follows:

Pressure on the vertical abutment VO = w x cotang. A°=w
x p’ sec. V°. '

Pressures on the lowest surface of each section.

A p=w x cotang..A° x sec. V*

B ¢ =w x cotang. A° x sec. V*

C 7 =w x cotang. A° x sec. V*

D s==w x cotang. A°® x sec. V*

&ec. &ec.

Let CB be an arc which measures the angle of any section, so
that OF may represent the secant of the angle AOF, and OE
== the secant of the angle of the abutment AOE: the difference of

. CM
the tangents FE = cos. AB x cos. AC

AOB, x sec. of the angle AOC, or, according to the notation which
has been adopted, the difference of the tangents FE = sin. B°x sec.
of V- x sec. V%, radius being = 1.

The weight of the section B, by page 6, = p x sin. B’ x sec. V,
but by the table in page above inserted, p = w x cotang. A*x sec.
wherefore the weight of the section B = w x cotang. A°x sin. B°
x sec. V7x sec. V2 on the same principles the weights of the several
sections will be expressed as underneath,

Sections. Weights.
A =w x cotang. A° x sin, A° x sec. V° x sec. V*

B = w x cotang. A°® x sin. B® x sec. V* x sec. V*

C = w x cotang. A® x sin. C° x sec, V% x sec. V¢

D = w x cotang. A° x sin. D° x sec. V* x sec. V¢

e= w x cotang. A° x sin. E° x sec. V¥ x sec. V*

F = w x cotang. A® x sin. F° x sec. V* x sec. W
- &, &e.

== sin. B® x sec. of the angle
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Because thelines Fig. 7. AE, EF, FG represent the weights of the
several sections AB, BC, CD, the sum of those lines, or AG, will
denote the sum of the weights of the sections A+ B 4+ C. Andin
general, if the angle of an abutment in an arch of equilibration
should = V= and the angle of the first section = A°, and its
weight = w, the sum of the weights of the sections when adjusted,
will = w x cotang. A® x tang. V=.

On this principle the weights of the sums of the successive sec~

tions, or the weights of the semiarches, will be as they are stated
underneath.

Sums of the weights of the sections, or weights of the semiarches.
A ., . . . —wxcotang. A° X tang. V2 —w x cotang. A® X tang. A

A+B . . . =w xcotang. A° x tang. V5 = x cotang. A® x tang. A + B

A4+B+4+C . =w X cotang. A® x tang.V* =% X cotang. A® x tang. A+ B+ C

A+ B4+C+D=w x cotang. A® x tang. Vé=w X cotang. A® x tang. A+ B 4 C4D
&c. &c. &c.

"The method of fluxions affords an additional confirmation of this
proposition: suppose an arch adjusted to equilibrium to be composed
of innumerable sections, the angles of which are evanescent; to as-
certain the weight of the sum of these evanescent sections included
within a given angle from the summit of the arch to the lowest abut-
ment V3 since the angles of the sections are evanescent, the quan-
tity Ve=V*: and for the same reason, the sin. of the angle D° will
ultimately = D. Wherefore, the evanescent weight of the section
D =7 x sin. D x sec. Ve== 7 x D x sec. V<. Let the tangent of the
angle V= to radius 1; then the sec. of V'=+/14 z*; and
because V¢= V¢ it follows that Vx V¢=1 4 z*: the weight
therefore of the evanescent section D==w x cotang. A°x D x 1+ 2°;

- Cae



L]
which is the fluxion of the weight of the arch equal to the fluxion
of the angle D° sec.” V* x w x cotang. A°.

But the fluxion of an arc x into the square of its secant is known
to be equal to the fluxion of the tangent of the same arc, when
both. quantities vanish together: therefore the integral or fluent,
that is, the weight of the arch, will be equal to the tangent of the
arc x into constant quantities ; that is, the sum of the evanescent
sections, or the weight of the entire arch, from the summit to the
abutment = w x cotang. A x tang. V.

On the Model, No. 1, for veryfying the Construction of an Arch, in
‘which the Weights of the Sections A, B, C, D, &c. are inferred
Jrom the Angles given in the present Case — 5° each, '

Although the various properties of arches described in the
preceding pages, respecting the weights and dimensions of the
wedges, and their pressures against the abutments, require no fur-
ther demonstration than what has been given in the preceding
pages; yet, as it has been remarked, that philosophical truths, al-
though demonstrable in theory, have often been found to fail when
applied to practice; in order to remove every doubt of this sort,
concerning the theory of arches, which is the subject of the
preceding -and present Dissertation, a model of an arch was con-
structed according to the conditions in Table I. in which the angle
of each section = 5°, the weight of the first section == 1, the
weights of all other sections being in proportion to unity. This
arch, like most arches which were erected previously to the 16th
century, consists of two semiarches, similar and equal and resting
against each other, in the middle of the curve, as described in
figure 2: the summit of the arch is occupied by two equal wedges
A, A, resting against each other when coincident with the
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vertical plane VO; according to the construction of this propo-
sition, the weight of the wedge A being assumed = 1, the weight
of B appears to be 1.01542, and the weight of the wedge C
== 1.04724. These weights being applied in the form of
truncated wedges, supported upon immoveable abutments, sus-.
tain each other in exact equilibrium, although retained in their
places by their weights and pressures only, and independently of
any ties and fastenings which are usually applied in the case
when the structure is intended for the purpose of sustaining
superincumbent loads. The pressure between the two first sec-
tions in a direction parallel to the horizon = p’ = 11.24300,
the pressure against the lowest surface of the first section == p
== 11.473%1: the pressure on the lowest surface of the second
section, or B = ¢ = 11.60638: on the lowest surface of C, the
pressure is = r = 11.83327. The intention of this model is not
only to verify the properties of equilibrium of these wedges, acting
on each other, but also to examine and prove the several pressures
on the lowest surface of the sections to be in their due proportions,
according to the theory here demonstrated. And it ought to be re-
membered that these pressures being perpendicular to the surfaces
impressed, the reaction is precisely equal and contrary; for this
reason, each of the surfaces subject to this pressure will have the
effect of an abutment immoveably fixed. _

The most satisfactory proof that the pressure on any abut-
ment has been rightly assigned is, by removing the abutment and
by applying the said force in a contrary direction; the equili-
brium that is produced between forces acting under these circum-
stances, it is a sufficient proof that the reaction of the abutment
is precisely equal to the force impressed upon it in a contrary
direction.
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After the weights of the several wedges in an arch of equilibra-
tion have been determined, in proportion to the weight of the first
wedge A assumed to be = 1, some diﬁiculty. occurs in forming
each wedge of proper dimensions, so that their weights shall be
correspondent to the conditions required. A wedge being a solid
body consisting of length, breadth, and thickness, of which one
dimension, namely, the thickness, or depth, remains always the
same; the weight of any wedge will be measured by the area
or plane surface in each section, which is parallel to the arch;
that is, if the thickness or depth of any section K (Fig. #.) be
put = 1%, the solid contents of the section K will be measured by
the area K¢S multiplied into 1%; put the angle SOT = 5°, the
sin. of 2° go’ 0" =3, cos. 2° go' 0"’ ==¢; also let Of = z; then we
find, by the principles of tfigonometry, that the area Ot = z’s¢,
and the area OTS = #*sc, and the area T#tS = z"sc — r*sc.
Let the area corresponding to the weight of the section proposed

k 2
=k, so that 2* — r*sc = k; and 2* = —is—:-ff: wherefore

k+ r2sc

z= —=%; and T or St, the slant height of the section K

= \/ : JFS:SC — r. This being détermined, the breadth of the

section i = 25 x 0l == esx, making therefore the radius OV
== 11.46281, with the centre O, and the distance OV = 11.46281,
describe the circular arc VABC; and in this arc from V set off the
several chords VA, AB, BC, &c. = 1 inch, in consequence of which
the angles VOA = AOB = BOC, &c. &c. will be 5° each. The

slant height and the breadth of each section will be computed by
the preceding rules. -
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On the Model, No. 2, for illustrating and verifying the Principles of
the Arch, when the Angle of each Section, after the first Section
A°, are inferred according to the Rule in Page 27 of former
Tract, from the Weights of the otber Sections.

In the propositions which have preceded, the several angles of
the sections A°, B°, C°, D°, &c. have been considered as given
quantities, from which the weights of the corresponding wedges
have been inferred, both by geometrical construction and by cal-
culation, when they form an arch of equilibration. The next
inquiry is to investigate the magnitudes of the angles from having
given the weights of the several sections; but as the construction
and demonstration would not in the least differ from that which
has already appeared in page 57 of the former Tract on Arches, it
may be sufficient in the present instance to refer to the former
Tract, both for explaining the principles of the construction and
the demonstration, inserting in this place only the result, which
is comprised in the following rule.
 Having given A®the angle of the first section, and the weight
b = 1.25 of the section B next following, together with the angle
at which the lower surface of A is inclined -to the vertical, called
the angle of the abutment of the section A, or V?, and the pressure
on it = p, to ascertain the magnitude of the angle B°, in an arch

adjusted to equilibrium : in the proposition referred to it is proved,
b X cos. V*

m radius be-

that on the conditions stated, tang. B° =
ing = 1. .

The model constructed to verify the principles of equilibration,
consists of a circular arc drawn to a radius = 21.7598 inches.
VA, AB, BC, &c. are chords = 1 inch each, and subtend at the

centre of the circle angles of 2° 38’ 0”: as the angle of the first
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section A° == 2° 38’ 0”, the angle of the abutment, or the angle con-

tained between the vertical and the lowest surface of the section

A=Ve=g°38'0": the pressure on thelowest surface of A"=p=—

= 21.%65553, and according to the rule inserted in page 12,

o 1.25XCOS. 2938'0"
tang. B T p+1.25 xsin. 2°38'0

the abutment contained between the lowest surface of B and the
vertical line == A° 4 B°== 2° g8’ 0" 4 §" 16’ 29" == 5" 54/ 29" =V°.
By the same rule, the angles of the successive sections C°, D°, E',
&c. &c. and the angles of the abutments corresponding, are coms
puted as they are stated in the columns annexed, in page 17.

Let the arch to be constructed be supposed such as requires
for its strength and security, that the weight or mass of matter
contained in the lowest section R, shall be five times the weight of
the first or highest section A, and let the arch consist of thirty-four
sections, seventeen on each side of the vertical plane: on these con-
ditions, the weight of the successive sections will be as follows:
A=1,B=1.25 C=1.50, D=17%5, E=2.00, F=2.235, &c.
as stated in Table IX: by aésuming these weights for computing
the several angles B°, C°, D°, &c. according to rule in page 12,
they are found to be as in the ensuing columns, and the succes
sive sums of the angles are the angles of the corresponding abut-
ments. By considering the drawing of this model, it is found to
contain the conditions necessary for calculating the areas required
for estimating the weights of the voussoirs. For the inclination of
each abutment to the abutment next following, is equal to the
angle of the section which rests on the abutment; thus, the in-
clination of the lines Iz, H7, is equal to the angle of the section
1 =H:I; also the inclination of the lines Hb, G, forms the angle
of the section H==HA G, and so on.

;=g 16’ 29”. Wherefore the angle of
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MobEL No. 2.
Dimensions of an Arch of Equilibration : the Angle of the first
Section, or A° = 2° g8’ 0", and the Angles of tbe other Sections,
and the Angles of the Abutments, are as follow :

Angles of the Sections. Angles of the Abutments.

°=:.>.3'8 (‘) Ve = 023,8 (3
B°=g 16 29 V= 5 54 29
C=3 5 39 Ve= 9 47 8
D°==4 24 86 Vé=m14 11 44
EP=45 g V=19 1 53
Fr=35 716 V=24 9 9
G =5 14 41 Ve =29 23 50
H=j51214  Vi=3436 4

=5 1 8 Vi=gg g7 12
K°=4 48 23 VE=44 20 85
L° =4 21 27 Vie=y8 42 2
M =3 57 33 Ve=52 39 35
N°=g gg 26 Vi=156 13 1
0O°= g 10 21 V= 59 23 22
PP=249 o V2 =62 12 22
Q=2 29 42 Vi—=64 42 4
RR=2 12 g1: V=66 54, 35

Geometrical Construction for drawing the Abutments, in the Model
Jor dllustrating Equilibrium of Arches, when the Magnitudes
of the Angles are inferred from the Weights of the severa
Sections. -

VABC, &c. represents the portion of a circular arc, which is drawn
from the centre O, with the distance OV: VIO (Fig. 8.) is a line
D ,
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drawn perpendicular to the horizon, dividing the entire arch into
two parts, similar and equal to each other: the radius OV=21.7598
inches: from the point V, set off the chord VA = 1 inch, and the
chords AB, BC, CD = 1 inch each; the angle of the first section
will therefore be = 2° g8’ 0”: forasone half : 1 :: the sin. of { A,
or sin. 1° 19/, to radius, which is, consequently, = 21.7598 inches :
the semiarch VR consists of seventeen sections, the weights of
which increase from 1 to 5, which is the weight of the lowest or
last section; and from these conditions it is inferred, by the rule
in page 15, that A°= 2°3g8' 0", B’ = g° 16’ 29", C°=¢° 52’ 39",
&ec. the successive sums of these angles, or the angles of the
abutments, A’ = 2° g8 o = V4, A° 4 B° = 5" 54/ 29" =V,
A4 B 4 C = ¢° 47 8" ==V, &c. as stated in Table IX.

The direction of the line must next be ascertained, determining:
the position of the abutment on which either of the sections, for
instance the section I, is sustained: from the peint O draw the
line OI: it is first to be observed, that the angle contained be-
tween the line I and VO, or the angle VII = g89° g7’ 12%
according to the Table 1X. and the angle VOI = 2° g8’ o” x.by
9 = 28" 42’ 0”: make therefore the following proportion: as
the sine of gg° g7’ 127, is to the sine of VII —VOI = 1 5 55 12",
so is radius OV, or 21.7598 inches to Ol = g.8597 inches ; this
béing determined, if a line ;I£ is drawn through the point I, the line
so drawn will coincide with the abutment on which the lowest sur-
face of the section I is sustained; and by the same principle the
directions of all the abutments are practically determined. Also.
it appears that the successive abutments 1:, Hi, include be-
tween them the angle H:I, which is therefore equal to the angle
of the section 1; therefore to find the solid contents measured by
the area of the section I, the triangle 7ss, being made isasceles
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the area iss will be = -'—’—3‘—:1"-—-“-—‘,* from which if the area I; H be

subtracted, the remaining sum will be equal the area of the section
I: put either of the lines is = z, then by the proposition which

- . .
s X Sih. s18

has been above mentioned, the area iss = , and by the

. : iH x i1 x sin. Hil®
same proposition, the area Hil = X=X """ ; conse-

. * x sin. I° C-
quently, is being put = z, we shall have =*>2~ — H/ x I:
+zI+bI x bH x sin. I°

sin. 1°

sin. I°
z

quently 1 = /2L 2L X EH XS0 1%, b0 vhe same rule the weights

sin. I°

=1, it appears that 2> = , and conse-

and dimensions of all the sections K, L., M, &c. are determined.
By the principles stated in the preceding pages, the weight of
either of the highest sections in any course of voussoirs, together
with the angle of the said section, regulates the magnitude of the
horizontal thrust. or shoot, and the perpendicular pressure on the
ultimate or lowest abutment and the direct pressure against the
lowest surface of any abutment will depend on the cotang. of
the angle of the highest section and the sec. of the angle of the

abutment jointly.

PROPOSITION. .
® The area contained in a right-lined triangle ABC, Fig. 10, is equal to the rectangle
under any two sides x I the sine of the included angle.
Let the triangle be ABC; AB and AC the given sides, including the angle BAC,
between them.
Through either of the angles B draw BD perpendlcular to the opposite base AC: by
the elementary principles of geometry it appears, that the area of the triangle ABC == the

C)(BD

rectangle under the base AC, and half the perpendicular height BD, or But

when BA is made radius, BD is the sine of the angle BAC: COnsequently, the line

BD — ’.’_A___x;_“.i‘_ ; and the area ABC = AC xAB x & f“ = ACxAD siv. A% which

is the proposition to be proved.
t+ I, here, means the weight of the section I. .

De
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In consequence of these properties, since each course of vous-
soirs stands alone, independent of all the voussoirs above and
beneath, the strength of an arch will be much augmented by the
degree of support afforded to the voussoirs situated in the course
immediately above, as well as to those underneath, which may be
“connected with the former.

Moreover, the inconvenience is avoided which obviously belongs
to the principlés, that are sometimes adopted for explaining the
nature of an arch, by which the whole pressure on the abutment
is united in a horizontal line, contiguous to the impost ; whereas
the magnitude of the horizontal shoot, and the perpendicular
pressure on the ultimate or lowest abutment has appeared by
the preceding propositions to be proportioned to the weight of
the highest section in the semiarch, and to the sec. of the angle
of the abutment jointly ; and consequently, the pressure on the
different points of the abutment may be regulated according to
any proportion that is required.

Whatever, therefore, be the form intended to be given to the
structure supporting the road-way, and the weight superincumbent
on an arch, no part of the edifice need to be encumbered by su-
perfluous weight; on the contrary, such a structure, consisting of
the main arch and the building erected on it, is consolidated by
the principle of equilibrium, into one mass, in which every ounce
of matter contributes to support itself, and the whole building.

The equilibration of arches being established by theory, and
confirmed by experiment, it becomes a further object of experi-
ment to ascertain, amongst the varieties of which the constructions
of arches is capable, what mode of construction will be most ad-
vantageous, in respect to firmness and stability, when applied to
any given case in practice. A simultaneous effort of pressure
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combined with weight, by which the wedges are pressed from
the external towards the internal parts of an arch, being the true
principle of equilibration, the wedges by their form endeavour to
occupy a smaller space in proportion as they approach more nearly
to the internal parts of the curve. It has appeared by the obser-
vations in page 29, Part I. that the bases of the sections may be of
any lengths, in an arch of equilibration, provided their weights and
angles of the wedges be in the proportions which the construction
demands, observing only that if the lengths of the bases should
be greatly increased, in respect to the depths, although, in geome-
trical strictness, the properties of the wedge would equally subsist,
yet when applied to wedges formed of material substance, they
would lose the powers and properties of that figure; this shews
.the necessity of preserving some proportion between the lengths
of the bases and depths of the wedges, to be determined by prac-
tical experience rather than by geometrical deduction.

With this view, a further reference to experiment would be of
use, to ascertain the heights of the sections or voussoirs, when the
lengths of the bases are given, also when the angles B°, C°, D®, &c-
are inferred from the weights of the sections considered as given
quantities, to ascertain the alterations in the angles B°, C°, D°, &c.
from the summit of the arch, which would be the consequence
of varying the angle of the first section A°, so as to preserve the
equilibrium of the arch unaltered: by referring to Table VI. we
observe, that when the weights of the sections are equal to each
other, or A =B = C = D, &c. and the angle of the first section
== 5"; then to form an arch of equilibration, the angle of the
second section, or B® must = 4° 55’ 30", the angle of the third
section C° == 4° 46’ 53", &c. And it becomes an object of expe-
rimental examination how far the stability and firmness of an arch
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will be affected by any alterations of this kind, and to judge
whether in disposing a given weight or mass of matter (iron for
instance) in the form of an arch, any advantage would be the
consequence of constructing the sections so that the first section
will subtend an angle of 1°, 2°, g°, 5°, or any other angle at the
centre of the arch, all other circumstances being taken into ac-
count. When the angle of the first section = 5°, and the weights
of the successive sections = 1, the angles of ‘the abutments will
be severally Ve = 5°0’ 0", VE=9’ 55’ 0", V:==14"42' 28", and
so on, as stated in Table VI. By referring likewise to Table VIIL.
we find the angle of the first section assumed = 1°, and the weight
of each of the subsequent sections being = 1, the angles of B°, C°,
&c. are severally BY =14 57", C° = 1°9' 51", D’ = 1° 14/ 39";
consequently, the angles of the abutments will be as follows :
Ve = 1° VP= 2% 4/ 57", V:= g 14/ 48", V' = 4’ 29’ 28", &c.
which give the dimensions of the sections when they form an arch
of equilibration. .
It has been frequently observed, by writers on the subject of
arches, that a thin and flexible chain, when it hangs freely and
at rest, disposes itself in a form which coincides, when inverted,
with the form of the strongest arch. But this proposition is with-
out proof, and seems to rest on some fancied analogies arising
from the properties of the catenary. curve, rather than on the laws
of geometry and statics, which are the bases of the deductions in
the two Dissertations on Arches, contained in the preceding pages;
if it should be proved that an arch built in the form of a catenary
or other specific curve, acquires, in consequence of this form, a
superior degree of strength and stability, such proof would super-
cede the application of the properties demonstrated in these Dis-
sertations.
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Concerning the relative Positions of the Cenires of the Abutments*
and the Centre of the Circle.

When the angle of an abutment is greater than the correspond-
ing angle at the centre of the circle; in this case, the centre of the
abutment falls above the centre of the circle, as in Fig.g. When
the angle of the abutment is less than the angle at the centre of
the circle, the centre of the abutment falls beneath the centre of
the circle, as represented in Fig. 9. When the angle of the abut-
ment is equal to the angle at the centre, this case will coincide
with that which is stated in pages 4 and 5 preceding, in which
Vee=A°, V=2 A°, Ve = gA%&e. VE= A%, VI = 2 A°, VP =. A°,
&c. &c. and consequently the centre of the abutment coincides
with the centre of the circle.+

Further Observations on the Courses of Poussoirs.

A, B,C, D, E, &c. terminating the letter F, denote the sections
which form the first course of voussoirs in a semiarch of equili-
bration, of which A° is the first, or one of the highest, sections:
if the weight of the section A be = w, and the angle of the abut-
ment VOF = V-. then it has appeared, by the preceding pages,
that the pressure against the lowest or ultimate abutment — w
x cotang. A x sec. V5. adly. Let B° be the angle of the first
section in the next course of voussoirs, terminated on each end
by the letter L, and let y be the weight of the first section, the

* The point in which any abutment intersects the vertical line is called, in thése pages,
the centre of that aburment,

4+ Let VO be aline drawn through V, the middle point of the arch passing through the
centre of the circle O; on this arc the angles of the sections and the angles of the abut-~
ments are measured : p, the point where any abutment, for instance I, continued intersects.
the vertical »O, is called the centre of the abutment,
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pressure on the last or ultimate abutment = z x cotang. B x sec.
V- Moreover, let =z be the weight of the first section C, in the
third course of voussoirs, which is terminated by the letter P. It
follows that the proportions of pressure on the ultimate abutment
denoted by the letters F, L, P, will be w x cotang. A® x sec. V' - &
x cotang. B° x sec. V¥, and y x cotang. C°x sec. V¢ respectively,
and according to these quantities, the respective pressures on the
several parts of the abutment, will be regulated according to any
law that may be required. *

The principles of arches having been established according to
‘the preceding theory, and confirmed by experiment, described in
the experiments No. 1 and 2; in the first of these, the angles of
each section are constructed = 5° and the weight of the section A
having been assumed = 1, the weights of the sections B°, C°, Dr,
&c. are inferred as stated in Table I. from the angles B°, C°, D,
&c. considered as given quantities. In No. ¢, the angle of the
first section is assumed = 2° 38’ o”. The remaining angles are
inferred from the given weights by the rule in page 15, A = 1.00,
B= 1.55, C = 1.50, &c. to Z =4, which is the weight of the
lowest or ultimate section. It has appeared in page 29, in the for-
mer Tract, that whatever be the figure of the interior curve corres-
ponding in an arch of equilibration, the bases of the sections which
are disposed in this form may be of any lengths, provided the
weights and the angles of the sections are in the proportions which
‘the construction demands.

CORRRCTION OF THE ENGRAVING FIG. 6.

* That the engraving of theFigur: § may correspond with the text, the summit
of the first course of voussoirs ought to be marked A, the first section of the second course
should be marked B, and of the third the first section — C, and so on ; this will make the
text correspondent with the Figure 6. '
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A further reference to experiment would be of use in practical
cases, to ascertain how far the strength and stability of an arch
would be affected by altering the proportion between the lengths
of the voussoirs and the heights thereof; for instance, when the
lengths of the wedges are given to ascertain the alterations in
the stability of the arch when the depths or heights of the
sections are three, four, or five times the length, Let the fol-

lowing case be also proposed; the entire weight of an arch
being supposed known, what part of this entire weight must
the first section consist of, so as to impart the greatest degree
of strength to the structure; also to decide whether the angle
of the first section ought to be made 1°, 5°, 10°, &c. or of what
ever magnitude would contribute to the same end. To these
may be added the following cases to be discussed; when the
angles of the several sections are inferred from the weights
thereof, to investigate what must be the proportion of the said
weights, so as to make the arch uniformly strong throughout.

FURTHER CONSIDERATIONS CONCERNING THE CON-
STRUCTION OF THE MODELS No. 1 AND No. 2.

Dimensions of a Model No. 1, of an Arch of Equilibration. Radius
= OV = 11.46281, the Angle of each Section = 5°, the Chord
of each Arch = §* =1 Inch. (Fig.7.) ‘

The first section is a brass solid, the base of which =KV =1
inch, and the sides Vo, K#, or the slant height of the section A
= .961, and the depth or thickness of each section == 1% inch,
the breadth of A or vk = 1.084.

The weights of the sections, as they are calculated according

to Table No. I, the first section being assumed as unity.
E
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Rule for making the brass voussoirs equal to the weights which are
expressed in Table No. I. Let the sine = 2° go' 0’/ ==, the cosine ¢
when radius = 1; then making the radius = r, the area of the triangle

0k = r*x s¢, and the area VOK = VO sc; from whence Vo, or the
slant height of the section A, when the weight = 1, is found to be

/‘ L% OV =961, the breadth vk = 25 x Ov = 1 084 =Vk. Thus,

S

by the same rule, the slant height of the section B =,/ 2325 __ y — g749,

sc
and the breadth // = 1.084, in all the sections entered in Table I. are

calculated,

‘Mobkr, No. L.

Weights of the sec- Weights of the sections| Weights of the

‘é’ tions as they are cal- when made of brass,| sections when | Sums of the

£-jculated in Table | Slant height of the | Breadth of the |[specifically heavier | made of brass, | weights in lbs.
£ {No. 1. in the Tract sections, sections, than water, in propor-| in 1Ibs. avoir-| avoirdupois,

= lon Arches. tion 8 to 1 : in ounces| dupois.

avoirdupois,

A= 1.00000Kk = .9610k =1.084A = 6.9444] 0.43404] ©:48403
Bl= 1.01549 L/ = .974/] =1.085B = 7».0515| 0.44072| 0.87475
C = 1og724Mm= 1.004mm=1.087C = 7.2725 0.45453 1-32928

D|= 1.0975¢Nn = 1.050nn =1.092[D = 7.6215 0.47585 1.80564,
E|= 1.16979/00 = 1.11600 =1.097|E = 8.1230| 0.50769| 2.31333

Fl= 1.26929Pp = 1.207pp ==1.105F = 8.8140 0.55087| 2.86421

Gi= 1 4%"”97 = 1.32999 =1.116[G = 9.7518| 0.60949| 3-4787°

Hi= 1.58754Rr = 149277 =1.150H = 11.024 | 0.64908| 4.16274

Il= 1.83910Ss = 171858 =1. 1491 =12.571 | 079822| 4.96096

Ki= 210175t = 2.01612 =1.176)K ==15.220 | 0.95128 5-91224
Li= 2%01g6|Vv = 244400 = 1. o13L = 18.764 | 1.17419| 7.08643

M’:—_ 3.47306Uu = g.o67uu = 1.264M == 24,122 | 1.50019| 8.59263

Ni= 4%1440Ww= g.098ww =1.857IN = g2.738 | 2.0461810.63882

Ol= 689199 Xx = 5553211 = 1.4840 ==47.860 | 2.99130[18.63012

Pl=11.25371 Yy = 8.279yy =1.729P =78.150 4884,45 18.51455 -
% = 22.16552/Zy = 13.836jzz =2. 2070 ==153.92 | 9 62045/28.13500

==065.8171 |Aa =29.056a == 3.534R = 456.96 128.57c00|56.70500
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On the Construction of the Model No. 2, in an Arch of Equilibration,
in which the Angles of the several Sections are inferred from the
W eights thereof, according to the Rule in Page 15.

In this model the arc A, B, C, &c. is a portion of an arc of a
circle: the first section A subtends an angle at the centre of the
circle A® = 2° g8’ 0", the chord of which = 1 inch = to the chord
of BC, CD, DE, &c. radius = OV = 21.7598 inches: the weight of
the first section being assumed = 1, the weights of the sections B,
C, D, &c. are considered as proportional to the weight of the first
section when it is = 1; if the weight of the seventeenth section or
R = 5, the weights of the intermediate sections will be B ==1.25,
C = 1.50, D=1.%75, &c. as stated in Table IX: and since A®
the angle of the first section = 2° 38’ 0”, by applying the rule
demonstrated in page 27 in -former Dissertation, and referred
to. in page 15 of this Tract, the angles of the several sections
are found to be A° = 2° g8/ 0", B°= g’ 16" 29", C° =g’ 52" 39",
and the corresponding angles of the abutments, or successive
sums of the angles of the sections, are 2° g8’ o’ 4 g° 16’ 2g”
= 5" 54/ 29" = V%, Moreover,"A° 4 B° 4+ C°= ¢4~ 8" =V,
and thenceforward according to the same law of progression. The
next object of inquiry is, to ascertain from what point I in the line
OV the line OII must be drawn, so as to coincide with the lowest
surface of the section I; when inclined to the vertical at the given
angle VII. The angle subtended by the semiarch VI at the centre
O is measured by the angle 101, and the difference of these angles,
or VII — IOI = I10. The radius IO being denoted by the same
letters which distinguish the line IO, the different meaning will be
determined by the context. From the principles of trigonometry,
the following proportion is inferred; as 10 : OI :: the sin. of IIO

Ee ‘
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to the sin, of OII or VII; consequently, the line [0 = 2¥X -0l 5 ;‘In on

As an example, let it be required to ascertain the inclination of the
abutment to the vertical, on which the section I is sustained when
it forms a portion of an arch of equilibration, and the angle of the
abutment VII = gg¢° g7’ 12": the angle VIO subtended by the
semiarch VI at the centre of the circle = 23° 42’ 0", which being
subtracted from the angle of the abutment gg° g7’ 12”, leaves the
angle IOl = 15° 55’ 12, and the distance required from the centre,

sin. OIT
Ol =0V x SVID or

inches; making, therefore, the line Ol = 9.35978 inches, through
the points I draw the line I, I, #, which will be the position of
the abutment on which the section I rests, the angle of which,
Vi = V1], is the inclination of the abutment V’ to the vertical : for
the same reason VHH = the angle of the abutment V*= VHH,
the difference of these two angles VII — VHH = GbAH, or the
angle of the section H®: making, therefore, the line Gb=a, Hb =5,
the properties of trigonometry give the area of the triangle GAH
sin. H

2

because OV= 21.%7598 inches, OI = g. 35978

; on the same principle, the area of the triangle

=ab x

Hl=Hl=HixIi xfin'z—H-o; and thus the areas of all the triangles
will be measured, from having given the sides of the triangles and
the angles included between them. The sides of the triangles may
be measured by a scale of equal parts, as stated in Table I. and in
this manner the sides of all the triangles were correctly measured
by Mr. Berge, so as not to err from the truth by more than an
unit in the fourth decimal place. This measurement was essen-
tial for computing the distance of the vertex from the base, so as
to form the dimensions of the brass wedges, correctly and inde-
pendently of their weights, in each triangle. For instance, rQ
being put =4 and rR = b, this will give the area of the triangle
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QR =2ab x Sm;Ro; and if the triangle raa is made isosceles, or

. . > 4 .Re
ra = z, the area of the triangle Raa = ZXn R the area

b x a x sin. R®
sin. Ro

sult will be

2w 4 theareaa X b % sin. R® b x sin. R¢
=2 ——; wherefore Qa =/ s

sin. R®
e — 2w 4 a X b xsin. R®
== 28.5777 — rQ and Ra = \/ %5 —rR.

Thus, by actual measurement, 2 = 23.9248 inches, and b=

; or if the difference of the areas is put = v, the re-

x* % sin. Ro
—— = w, Of T=ra

3 3
— the area 2XexsinRe ’:sm' R

sin. @ X b xsin.R®
2

24.8056, and the area ab x RLCES 10.786%70 =\/2"” + 3%

. Ko
— Qr, and Ra =4/ 22+ <= Iij 2 — — rR: the area raa

2% x sin. R®
2
result is, that the area aaRQ == raa — rQR = 5 square inches:

and since every square inch of area is occupied by a weight of a
section = 6.94.44, 0Z. avoirdupois, we arrive at the following con-
clusion, that the weight of the section R == 5 x 6.9444 = 84,7222

oz. avoirdupois. Because /22 = "Rff - B ra =28.57770,
this determines both the greater and lesser sides of the section R;
namely, the greater side being = ra — rQ} == 4.6529; and the
lesser side being == ra — rR == 4.2%721 inches; in this way, the
Table is formed, shewing the greater and lesser sides of the several

== 15.786%0, or the area raa = 15.786%0; the

—

sections.
According to this mode, the dimensions of all the brass wedges

were formed ; the investigation of the angles of the wedges from
the weight thereof is the subject of investigation in page 27 of the
First Part of the Tract, entitled a Dissertation on the Construction
and Properties of Arches; and it appears that if the angle of the
first section is given == A°, together with the weight thereof = 4,
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assumed to be == 1, the weights of the other secticn B=b=1.25,
the weight of C =c¢==1.50, of D=d = 1.75, &c. The prin-

ciple of equilibrium is established, by making the tang. of the

_axcos. A° b % cos. B®
1)-1- X sin. A®? q+bxsin.B°’

as they are stated in Table IX. which contains the conditions,
founded on supposing that the strength and security of the arch
are such as require that whatever weight should be contained in
the first section, the weight of the seventeenth section R shall be
five times as great : making, therefore, the weight of A = 1, the
weight of B == 1.2, and C = 1.50, and the weight of the seven-
teenth section or R == 5, &c. Thus the angle of the first sec-
tion A® being assumed = 2° g8’ 0”, and the initial pressure on
the lowest surface of A = p == 21.76555, and the weight of
the first section — a==1: from these data the following results

also the tang. of the angle C°=

angle B°=

. . axcos.Ve 't ° _b x cos. Ve
are obtained : FTaxomve— 2" 88’ o” tang. B’ = =% F b x sin. V=
¢ X cos. V*

=g"16' 29" tang. C’ = v =8 52’ 39", &c. &c. accord-

g + ¢ x sin.
ing to the statement in Table IX.

The Dimensions of the Sectionk, according to the Rule in Page 29.

Lesser Sides, * Greater Sides. " Lesser Sides. Greater Sides.
A =o0.97827 . 0.97827 K =273754  3.12824,
1.206%6 1.21126 L = g.14849 8.47069

1.41568 1.44928 ‘M =3.36800  g.41700
1.61833 1.66693 N = g.64620 4.01460
1.81718 1.90118 O = g.87463 4-25476
= 2.00676 2.13656 == 4.16762 4.55142
= 2.20080 2.86920 Q = 4.43768 4.82088
=2.42850 2.63910 R = 427210 4.65290
=2.62584  2.88134

Il

I
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. Table I.
Lines measured by Mr, Berges on a brass platey being
the distances as undermentioned.

Arcas of the greater

v,
Arcas of the lesser triangles.

I e R T R T T

0A =121.7508.

bB = 17.4970

6 |cC == 14.83%2

dD =14.05%8
¢eE = 11.8%26
fF =11.1955
gG =10.9108
hH = 10.8023
iI ==11.2015
kK = 11.9885

L =124210
mM = 13.7265
nN = 15.0954
00 = 17.04/%2
PP = 19.01385
qQ ‘= 21.4447
R == 24.8056

Mmoo zZzZERTIQEEBOQW R

I1,
Breadth of the sections.
vk = 1.0449|Ovk
[l = 1.0689|b/l
mm == 1.1010|cmm
nn == 1.0997|dnn
00 == 1.1550|{¢€00
pp = 11796/ fpp
qq9 ==1.2007£qq
rr == 1.2012|brr
§§ == 1.2118|iss
it == 1.1898|kit
vv == 1.1888|/vv
uu = 1.1814{muu
ww == 1.1961| nww
rr = 1.1584|oxx
Yy =1.11851pyy
2z = 1.1269|qz%
aa == 1,1014|{raa

fuguunnrangniimen

OVA = 108%%0
bAB = 8.7418
¢BC = #4915
dCD = 0.5309
eDE = 5.8994,

L= 55201
grG = 53509
LGH = 51887
HI = 53632
RIK = 57381
IKL = p.7090
mLM = 6.g383
nMN = 6.8966
oNO = #7.8619
pOP = 8.rog1
qPQ = 9.8g10

QR = 10.7367

[1§]
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Diffences | VI ' VIt VIIL. | 1X,

between the o1 .Gfxt\:n‘w etl‘%}xlx:s- Pressures on the lowest | Angles of the sections, Angles of the abutments. |Distances of the vertex from
'frcatcrtavxid Scations. fofthesecti surface of each scction. & ) " | the base of cach triangle
ongles. ‘ | Ock.

1.0000 |A = a|==1.00|p == 21.76555/A° ==2 88 o|V:= 2 g8 o|Ok = 22.7380%
1.2500 (B == bl=1.25lq == 21.8586;|B° =g 16 29|V’ = 5 54 29| bl = 1870846
1.5000 |C == ¢| = 1.50|r ==22.06856|C° =g 52 39|V = g 47 8|cm = 16.25288
1.7500 D = d|==1.75{s ==22.42734|D° =4 24 86| V' ==14 11 44| dn =14.6761g
2.0000 [E == e|==2.00f = 22.99972|E° =4, 50 9|V =19 1 53|e0 = 13.68978
2.2500 [F == fl=12.25v ==28.82853/F° =5 7 16|V =24 9 9|fp = 1g.20226
2,5000|G = gl==2.50 4 ==24.95590G’ =5 14 41| V& =29 23 50|8¢ ==18.11160
27500 H = hl=2.75lw=126.41465H° =5 12 14| VP =g4 g6 4|hr =1g.23080
g.0o0o |l = i|=8.00|z ==28.22645|1' =5 1 8|Vi=3g9 g7 12]is =13.82734
g.2500 |K = k== 3.25|y == 30.40220|K® =4 43 23| V! =44 20 g5| bt = 1477604,
8.5000 |l = ll=g.50|x == 82.94g76|L° =4 21 27| V' =48 42 2|lv = 1556949
87500 M =m| == g.751a = 85.84656| M°==g 57 33| V"=152 89 85| mu == 17.09450
40000 |N = g/ = 4.00|b == gg.10209|N* =3 g3 26| V" =56 13 1|nw = 18.74160
4.2500 |0 == o] == 425 |c = 42.609992|0° == g 10 21|V’ =59 23 22| 0T = 20.92166
4.5000 P = pl=4.50|d = 46.62917|P° =2 49 o|V? =062 12 29 py =—=2g.18112
4.75001Q = gl=4.75 e = 50.87939|Q" =2 29 42| V? =64 42 qz = 25.88238
5.0000 R = 7{==5.00\|f = §5.44104{R* = ¢ 12 31|V =66 54 35 ra == 28.57770

[ &8 ]
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From the preceding observations, the following practical rules
may be inferred for deducing, in general, the weights of the
sections, the pressures on the lowest surfaces thereof, and the
weights of the semiarches, from the conditions on which they
depend: to give a few examples of each rule, are applied to the
Tables subjoined to this Treatise : it appears from page 10, that
the weight of any section is equal the product formed by multi-
plying the weight of the first section, (assumed — w) into the
cotang. of the first section, x into the sine of the angle of the
given section x secant of the angle of the abutment of the pre-
ceding section, x secant of the angle of the abutment of the sece
tion given: in this manner the weight of the section R in Table
No. I. may be found: for w being = 1, and the angle of the first
section == 4, the cotang. of 5° == 11.430052, and the angle of the
section R — 5°, sin. 5° = .087155% : the angle of the abutment of
the section preceding == V¢ = 80°, and the angle of the abutment
of the section given V-==835": the result is, that the weight of the
section R == 11.430052 x 0871557 x 5.7587705 x 11.473713
== 65.8171. By page 10 it also appears, that the pressure upon
the lowest surface of any section R is equal to the product which
arises from multiplying the weight of the first section x cotang.
of the angle of the first section x by the secant of the angle of
the abutment of the given section, which makes the pressure on
the lowest surface of the section R == 11.430052 x 11.473713
== 181.1450, agreeing with the number entered opposite to the
section in the column entitled entire pressures.

Lastly, the sum of the weight of the sections is found to be
cotang. A°==11.430052 x tang. 85° = 180.6401, when the weight
of the first section is == 1, agreeing with the number entered in
Table No. 1. opposite Sr. By similar rules applied to the several

F
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Tables II, I11, IV, V, &c. the results will be found to correspond
with those entered in the respective Tables.

In the Table No. I'V. the angles of the sections are taken indiscri-
minately and at hazard ; but the rules which have been exemplified
above, in the former cases, will be no less applicable to the com-~
putation of the numbers in all the Tables. In the Table No. IV.
the angle of the section O == 12", the weight of the section O
== 981.4682 ; to compare this with the rule; the weight ought to
be == w x cotang. 5 x sin. 12° x sec. 76 x sec. 88° — 281.4682, as
above stated: also by the rule in page 10, the pressure on the
lowest surface of O = w x cotang: 5° x sec. 88’ = g2%.5108, cor-
responding with the pressure, as stated in Table IV. Also in this
Table the angle of the section P = 1° and the angle of the abut-
ment V? = 8g°, the angle of the abutment of the section O or
V° = 88", the other notation remaining as before, the weight of the
section P = ge7.5107, and the pressure on the lowest surface of
P = 654.9206, the weight of the semiarch = w x cotang. 5’ x
tang. 89 == 654.8220, as entered in Table IV. The computations.
founded on these rules produce results in no case less correct
than in the former instances. '

In No.:VIIL the angle of the first section = 1°, and the angle
of the section R° = 1° 54/ 18".421 ; the angle of the abutment of
the same section (R) == 26° 18’ 54".74/7: from these data, the rule
above mgnﬁoned gives the weight of the section R == w x cotang.
1° x sin. 1° 54/ 18”.421 x sec. 24 24’ §6”.316 x sec. 26°18' 54”747
== 2.93883, Which is the correct weight of the section R, as en~
tered in Table VIII. To find the weight of the section R in
Table IX. according to this rule, the weight of the section R
==cotang. 2° g8’ o” x sin. 2° 12’ 31" x sec. 64° 42’ 4" x sec.
66° 54/ 35" = 5.00000, as entered in Table IX.



L35
1t is needless to multiply examples to the computation of these
“Tables, the numbers in all cases being equally correct with those

in the preceding instances, by which the rules for computing the
Tables have been abundantly verified.

Experiment for determining the borizontal Pressure in Model No. 1.

In considering the circular arch as completed, it is difficult, at
first view, to ascertain the magnitude of pressure sustained by
any of the surfaces on which the sections are supported. Both the
theorists and practical architects have differed considerably con-
cerning this point. From the preceding demonstrations, and the
ensuing experiment, it appears, that the magnitude of pressure sus-
‘tained by the vertical plane is to the weight of the first section as
the cotang. of 5°is to radius; and the weight of the first section, or
w, having been found = .4840g parts of an avoirdupois 1b. and the
cotang. of 5° being = 11.43005¢ ; the result is, that the horizontal
force or pressure = .48408 x 11.450052 = 4.961 1bs. avoirdupois,
differing very little from 5 lbs. which, in this experiment, counter-
balances the horizontal pressure.

A second Experiment on the Model No. 1.

If the brass collar is placed round the section C, so that the
line cd may pass over the fixed pulley in the direction c¢d, the equi-
Iibrium weight in this case being = w x cotang. 5° sec. 15°, or
43408 % 11.430052 — 5.1360 1bs. avoirdupois, being suspended
at the extremity of the line, keeps the whole in equilibrio.

Horizontal Force, by Experiment on Model No. e.

In this experiment all the sections on one side of the vertical
line or plane being taken away, and a force — 11 lbs. weight is
suspended at the extremity of the line cd passing over the pulley

Fe
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z, in a direction parallel to the horizon ; after the Model and centre
arch have been adjusted, as in the last experiment, when the
centre arch is taken away, the remaining sections will be sustained
in equilibrio.

A second Experiment on the Model No. 2.

The brass collar being placed round the section C, and a weight
of 1211bs. is applied to act on the lowest surface of the section C,
when the brass central arch is removed, all the sections in the re-
maining half of the arch wil be sustained, without further depend-
ance on the brass central arch.

On the Experiments for illustrating the Propositions concerning the
Pressures on the lowest Surface of each Section, and against the
vertical Surface, in an Arch of Equilibration.

In the Model No. 1, the angle of the first section A° = 5°, and
it appears from the preceding propositions, that in this case, the
horizontal force or shoot, as it is called; == w x cotang. 5", in
which expression w is equal the weight of 1. cubic inches of brass,
the specific gravity of brass is to that of water in the proportion of
about 8 to 1, and the weight of a cubic inch of water is very nearly
= .5%870 ounces avoirdupois ; * it will follow, that the weight of a
cubic inch and half of brass will be .57870 x 1% x 8 = 6.9444,
ounces, or 0.48402 parts-of a pound avoirdupois.—If all the
sections on one side of the arch are‘removed, and a force in a
horizontal direction is applied, that is in a direction perpendicular
to the vertical surface of the first section, the whole will be kept

® By a decisive experiment of Mr. Cotes it appeared, that the weight of a cubic foot
of pure rain water was exactly 1000 ounces avoirdupois ; therefore, since the magnitude

of a cubic foot == 1728 cubic inches, the weight of a cubic inch of rain water = :—:%;

== 57870 ounces avoirdupois.—Cotes’s Hydrostatics, p. 43
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in equilibrio by a force of 5 pounds avoirdupois, consisting of the
equilibrium weight, which is 4.961 added to a friction weight,
amounting to 0.0g9, being a weight exactly sufficient to counter-
act the effects of friction, cohesion, and tenacity.

Ezxperiment for determining the borizontal Force or Pressure in the
Model No. o, in which the Weight of the first Seciion = .43403
Parts of an avoirdupois Ib. and the Angle of ihe first Section
=29° 38’.

If half the number of sections on one side of the arch in Model
No. 2. are removed, and a force of 11 pounds weight, acting in a
direction parallel to the horizon, is applied to sustain the other
half of the arch, the whole will be kept in equilibrio by a weight

of 9.437 added to a weight of 1.563, making altogether the weight
of ‘11 pounds avoirdupois.

On the general Proportion of the Pressures on the lowest Surface
of each- Section in the Model No, 1, expressed in general by w x
Cotang. A° x Sec. V-.

In the case of the pressure on the section C = w x cotang. A°

x sec. V°: here w = 0.4g402 pounds; the angle of the abutment

‘= 15, the secant of which = 1.0352%62, and the cotang. of 5°

‘being — 11.430052, the pressure on the lowest surface of the
section C == 5.1359, the equilibrium weight, when all the sections
below the section C are removed, in the Model No. 1, and the

weight of 5L pounds is applied against the lower surface of C,

the friction weight being = 0.4641, when the brass central arch

is removed, the whole will be sustained in equilibrio.

Similar Experiment upon the Model No. 2

The weight of w, that is, the weight of the first section in
Model No. g, is the same with the weight of w in Model No 1



[ 88 ]

that is, w == 6.9444, ounces, — 0.43402 pounds avoirdupois ;
which is the weight of 11 cubic inch of brass; and, by the rule in
page 10, the pressure on the lowest surface of C=w x cotang.
2° g8’ 0" x sec. Vi==g.5762* If, therefore, all the sections below
C are removed, and a weight of 12£ pounds is applied against the
lowest surface of C, when the centre brass arch is taken away, the
remaining arch will be sustained in equilibrio.

By a similar experiment, the proper weight — w x cotang. A°
x sec. V* applied in a direction against the lower surface of any
other section Z, or perpendicular to it, would have the effect of
sustaining it in equilibrio.

It has been remarked, in the First Part of this Tract, (page 5.)
‘that if the materials of which an arch is constructed were perfectly
hard and rigid, so as not to be liable to any change in their form,
and the abutments were removably fixed; an arch, when the
sections have been adjusted to equilibration, although little de-
viating from a right line, would be equally secure, in respect to
equilibrium, with a semicircular or'any other arch. This observa-
tion applies in some degree to the construction of a rectilinear or
flat arch, according to a method employed by engineers, for trans-
mitting water through the cavities of the several sections, each of
which, when filled with water, will be nearly of the same weight;
and for this reason it would be expedient to adopt theplan of
construction which is numerically represented in Table VI. or one
of the various other plans, in each of which the weights of each
.section are assumed — 1.

Construction of a Rectilinear Arch. Fig. 11.
COC represents a horizontal line, in which the lines OA, AB,
BC, &c. are set off at equal distances from each other. From the

* w = 434027 cotang. 2° 38’ o' = 21.742569 sec, V* = 1.014763 w X cotang, A°
X 9°47 8 = 9.5762.
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point O, considered as a centre, draw Oz inclined to the line OV,
at an angle of 5°: through the point O likewise draw Ob, inclined
to OV, at the angle g° 55’ 30”; also through the point O draw Oc¢
inclined to OV, at an angle = 14 42’ 28”; and draw through the
point Ag parallel to Oa, through B draw Bb parallel to Ob; like-
wise through C draw Cc parallel to Oc, &c. these lines, representing
thin metallic plates, of which the angles are 5°, 47, 55 30" 4° 46 535
&c. respectively; and the sections OV, Aa, Bb, Cc, &c. being formed
of dimensions similar and equal to the sections on the other side;
that is, VO, ¢4, forming an angle of 5°; Aa, Bb, 4° 55 30”; and
Bb, Cc, an angle of 4° 46" 53", &c. the whole will constitute a recti-
linear arch of equilibration, supporting itself in’equilibrio by the
help of small assistance from beneath,and admrttmg the water
to pass freely through the cavities of the sections.
- The geometrical figures-were drawn to a scale equaI to' the
_orlgmal Model; that is, the vadius of Fig..%7. was 11,46281 inches,
and the radius of the Model No. 2. .= 21.7598 inches; the engrav-
ing of these drawings are in proportionito.those nmmbers; that
is, Fig. 7. and in the Fig. 8. in the proportion.of 1'to-g. It may
be added, that the Figure g. ‘was drawn to aradius == 10 inchés,
which is engraved in proportion of %, or to’a radius = 3 inches.

The radius = OV (Fig. 8.) in the original drawing is = 217568
inches, and OQ is, by Table X..=:g:2468, the difference of these
quantities will be 12.5280 in the original drawing, ‘or id the en-
graved plate, equal to-one-third part, which- makes the litie Vg eqiral
one-third of the té-ng.‘ of 'the angle of:the abutment; to-a’radius
12.5280 = 8.841, scarcely differing. from- the-figure:in the en-
graved plate.

Fig. 9. is drawn to a radius of 10inches, OV in the engraved



[ 40 ]

plate = 5 inches ; which makes the line Ok = OV 22249 o

sin. 41° 10517
= 1. 1642 whence the line VZ is equal to the tang. of 41° 10’ 517,
when the radius 6.1642 = 5.3926, which is nearly the length in
inches of the line V in the engraved plate. ‘

On the Use of Logaritbms, applied to the Computation of the sub~.
» joined Tables.

Logarithms are useful in making computations on mathematical
subjects, particularly those that require the multiplication or divi-
sion of quantities, by which the troublesome operations of multi-
plication and division aré performed by corresponding additions
and subtractions of logarithms only. By the preceding proposi-
tions it appears, that the quantity most frequently occurring in these
computations is the weight-of the first section, represented by w,
and the cotang. of the angle of the first section. In the Table No. I.
{Model No. 1.) Fig. 11, the-angle of the first section A°= 5°,
and in Table No. IX. Model No. ¢, Fig. 13, the éngle of the first
section A’ =2° 38’ o’;:in the two Models which have been described,
the weights-of the firstsection in each Model are equal, each being
the weight of a.cubic inch-and half of brass;. the specific gravity
of brass is to-that of rain“water in'a proportion riot very different
from that-of 8 to: 1; 'sémetimes 2. little exceedmg, or sometimes a
falling-short:.of that proportion; on an average, therefore, the spe-
cific:gravity of brass may be taken' to that of water as 8 to i: a
cubic: foot:is equal in capdcity 17728 cubic inches, and as a cubic
foot of rain-waterhas. been found. by experiment to weigh 1000
ounces avoirdupois almost exactly, it is evident, that the weight of
a cubic inch of brass, of average specific gravity, weighs nearly
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8 x .57870 = 462960 ounces, therefore 11 cubic inch of brass,
weighs 6.9444 ounces, = .43402'7 parts of an avoirdupois pound
== w3* the logarithm of which, or L. w == 9.6375176.

One of the most troublesome operations in the computation of
the Tables subjoined, is to ascertain the weight of a single section,
from having given the conditions on which the weight depends,
which are as follows : The weight of one of the first or highest sec-
tions of the semiarch; the angle of the given section, with the angle
of the abutment thereof, together with the angle of the abutment
of the section preceding : to exemplify this rule, let it be proposed
to find the weight of the section P in an arch of equilibration,
in Table No. L. the first section of which = 5°, the angle of the
section given == 5°, the angle of the abutment of V? = 75", the
angle of the abutment preceding or V° = 70°.

Comoputation for the weight

in avoirduapois 1bs. Computation for L. w.
Log.w - =9.6375176 Log. :;’:Z = 9.7624563
L. eotang. 5° = 1.0580482 L. -156- = 9.6989%700
L.sin. 5 = 8.9402960 L. 2 =o.1760913
L. sec. 75" = 0.5870088
L. sec. 70’ = 0.4659483 L. w=09.6375176

L. weight of P = 0.6888139
Weight of P'—= 4.8844,  1bs. avoirdupois.

* Tn the Model No. 1. the dimensions of the first section of the semtarch are as follow:
the base = 1 inch, the slant heighton either side = .g61, and the breadth — 1.084; which
makes the area of the first section parallel to the plane of the arch == 1 square inch ; this
multiplied into the depth or thickness, makes the solid contents of the first section == 1
X 1 % 1%, which is a cubic inch and half a cubic inch.

In Model No. 2. the dimensions in the first section of the semiarch: the base, or the
chord of 2° 48 07, to a radius of 21.7598 = 1 inch, the slant height are as follows: the
area of the first section parallel to the plane of the arch = 1 square inch ; this multiplied
into the deprh or thickness, which is 1% inches, the solid contents of the first section be-
comes == 1 X ¥ X 11, or the solid contents of the first section == 1§ cubic inches = .978z2,
and the breadth = 1.0449, which makes the solid contents of the section = 1L cubic
inches, the weight of which — 4.3027 parts of an avoirdupois pound.
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By this means, another method of computing the weight of any
section P is obtained, by putting the sum of the weights of all the
sections from the summit to the section P; that is, the sum of all
the weights from A® to P°=S$p, and the sum of the weights of all
the sections from A to O = So, the weight of the section P will
be = Sp — So, for the rule in page 10,

Computation for Sp. Computation for Sa.
Log.w - ==0.6375176 Logw - =g.6375176
L. cotang. 5% = 1,0380482 L. cotang. 5° == 1.058c482
L.tang. 75°=< 0.5719475 L. tang. 70° = 0.4389341
L.Sp = 1.2675133 Sp = 18.514 L. So = 1.1344999 So = 13.630
Sp = 18.514
So =13630

Sp—~So= weigixt of the section P = 4.884, as before determined.

The computations of the dimensions (Fig. 7) of the brass sections

in the Model No. 1. are much facilitated by the use of logarithms,

particularly in finding the slant height Of from the centre O

of any section (K,) and the height of the section itself, or
St = Tt.

Computation of the slant Height OT of the Section K.

It is first necessary to ascertain the area of the surface OST
comprehended between the radii OS, OT, and the chord ST. -

Since the radius OS = 11.46281 and the angle SOT = 5°, half
SOT = 2° go’ 0, the

Sin. of 2° go’ o” or s = 8.6396796 Log. r = 1.0592910

Cos. 2 go o orc=9.9995865 _ 2
L. sc = 8.6892661 L. 7" = 2.1185820

L. = =1.3607339 L. sc == 8.6392661
Log. of the area OST, or L. s¢c x 7* = 0.7578481
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The area OST = 5.72595
The weight K= 2.19175
K+7sc= 791770
L. m: -0.8985990
L. —:; = 1.3607339

L‘K+r’sc___

e — 2.2593329
L. /K '*;crz Z = 1.1296664
Ot = 18.47928

Radius OS, or —=r == 11.46281
Height of the section K = #£ = s.01647

Similar Computation for the Section L.
L.7”= <2.1185820
L. sc = 8.6992661
Log. of the area OTV = 0.7578481
area OTV = j5.72595
L= 20196
L 4 rsc= 8.42791
L.LF7sc= o0.9257199
L. —= 1.3607339

L.t 'E::sc = 2.2864538

L. \/L ‘*;6’1” = 1.1432269
Ov — 18.906%9

r==11.46281

Height of the section L —vv = 2.44398
G ¢



[ 44 ]

For the Section M.

L. 7" = 2.1185820
L. sc = 8.6392661

Log. of the area OVU = 0.7578481
area OVU — 5.72505
M= 3.44736'6

M 4 r*sc = 9.19¢51
L. M+4rsc= 0.9637694
L. 's'IE = 1.3607339

M 4 r*se
4, == 2.8§245033

‘v[ 2
L. \/-l--J—:-E—r-——mz 1.1622516

Ou = 14.52953
r=—11.46281

Height of the section M =uy = g.06672

sin. Le°

Computation of \/T2IIXIT

L a= 1.08274283
L b— 1.0941566
L. sin. I’ = 8.8806¢960

L. abxsin. L= 1.0575949
ab x sin. L°==11.41812
W= Y.

——————— i ————

L.ew 4 abxsin. L°=18.41812
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L.ew 4 abxsin. L’ —= 1.2652453
L. sin. L= 8.8806¢y60

L 2w + ab x sin. L°

s 28845498
L. \/“" “’s:nb zcsm' L 1.1922746
2w 4 ab x sin. L°
\/ T = 15.56949

See page 19 and page 2g, in which the computation is inserted

of the quantity W= \/ zw +; !l» g:m R'

Computation for M°.
L. 2= 1.1263101

L. b= 1.1875598
L. sin. M°—= 8.8391355

L. ab x sin. M= 1.1030054
ab x sin. M° = 12.6766%7
QW= 7.5

R ]

ew + ab x sin. M’ = 20.17667
L.ew+4 ab xsin. M* = 1.3048496
L. sin. M°* = 8.8391355

2w + ab ¥ sin. M°
L sin. M° = 2'4'65714‘1

b &
L. ‘/2w+su X 10398570
2w 4 ab x sin. M°
\/_ s = 17.0945
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Breadth of the Section L.
Log. slant height from the centre = 1.1922561
L. 2 =0.3010300
L. sin. £ L’ =8.5799524,

Log. breadth of L’ =0.0732385
Breadth of L° — 1.1836
Breadth of L in the drawing =—1.1838

o error.
Breadih of M.
Log. slant height from the centre = 1.2328570
L. 2 =—o0.g010300
L. sin. L M°==8.53851%0
L. breadth of M°®=—o0.0%724040
Breadth of M° — 1.1814,
Breadth of M by the drawing = 1.1814,

Ezxplanatory Notes on the Propositions in Pages 18 and 14, in the First Part
of this Tract, in which A°=p°, B°=5", = C°=D°, &c. according to
the Explanation in Page 12. The initial Pressure = ;—)—(—u%-

TE» O putling
w = 1, the initial Pressure or p — L x cosecant 2° 3o’ 0.

L. p= 1.0592904, L. p = 1.0592904
L. cos. A’ = 9.9983442 L. sin. A° = 8 g402960
— L. tang. 2° go’ 0" == 8.6400931

L.p x cos. A’ = 1.0576946
pxcos. A’=11.41917  L.px sin. A’ x tang. 2° 30’ 0" =8.6396795
Vexsin.2’°go’0” = .04362 pxsin.A’x tang.2 30 0 == .04362

11.46279=p

It appears from this computation that p x sin. A® x tang. V# is equal 2 X sin. V4, when the
weight of the first section, or a = 1.
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The Weight and Pressure on the lowesi Surface of the Section B.

L.p = 1.0592904 L. p =1.0592904
L.cos. B°= 9.9983442 L. sin. B° — 8.9402960
— L. tang. V2P=9.1194291

L.p x cos. B°= 1.0576346
p xcos. B =11.41917 L.pxsin.B'xtang.Vé—g.1190155
bxsin. VP= .1g3153 pxsin.B’xtang. V= _.13153
p x cos. B°=11.41917
11.55070 =g p x cos. B°+ p x
Lp= 1.059'9904_( sin. B°x tang.Vé=11.55070
L.sin. B° = 8.9402960
L. sec. V= o0.0087314

L.pxsin.B’xsec.Vi—= 0.0083178
pxsin.B*xsec.Vi= 1.0076

P~

ERRATA.

Page s, line g, for cotang. A X sec. A, read cotang. A° X sec. A°.
—— 6, — 19, for that part of weight, read that part of the weight.

10, — 20, for p == w X cotang. A° X sec. read w X cotang. A° x sec. Vi,
—— 14, == 12, for area Kis, read T ifs.
—— 14, — 17, for 3* —r1*sc = k, read x*sc —r*sc =k.

23, — 5, jor Fig. 9, read Fig. 8.

24, — 1, for x X cotang. B, read y x cotang. B.

24, — 5, for x X cotang. B®, read z x cotang. B°.
—— 24, — 16, for in No. 2, read in the Model No. 2.

28, — g, for OI, read OV.

28, — 12, for the point II, read through the points II.
In Table No. IV. in the weight of the section I, insert 0.654983.
In Table Ne. X, for OV?*, read OV taken at 21,7598,

L —— ]
Printed by W. Bulmerand Co.
Cleveland-row, St. James’s



TasrLe No. I,

Shewing the weights of the several sections or wedges which form
an arch of equilibration, when the angle of each section is 5°;
and the weight of the highest wedge is assumed = 1. Also

- shewing the pressures on the lowest surface of each section,
considered as an abutment. '

The weights of the two first sections A in each semiarch =1.
The lateral or horizontal pressure == p' == 11.480052, Sd = the
sum of the four successive weights = A - B + C + D, &c. &c.

%‘ gfnglif gzaﬁg stg:é:igi_ﬁd Weights of the Semiarches. Ez;ﬁ::c:rsclt:?:; oofne:g:
* |tions. [|ments. Section.
Al 5" |V4 51 1.00000 Sa = 1.000000 | 1147871 =p
Bl 5 |Viio]| 1.01542 Sb = 2015426 | 11.60638 = ¢
C| 5 |Viis| 1.04724 S¢ = g.06267g | 1183927 =7
D| 5 |Vieo| 1.09752 Sd = 4160196 | 12.16860 =S
E| 5 |Viyes| 1.16972 Se = 5829920 | 12.61165 =1
F| 5 |Wigo| 1.26922 | Sf = 6.599144 | 18319829 =v
G| 5 |VEg5| 1.40427 | Sg ==8.003420 | 13.95351 =u
H| 5 |Viqo| 1.58754, S b == g.590960 | 14.92087 =w
Il 5 |Vias| 1.8gg10 Si = 11.48006 | 16.16453 =z
Ki{ 5 (Vis50| 2.19175 Sk = 13.62181 | 17.78200 =y
L| 5 |Viss| 270196 S = 16.82377 | 19.92768 ==z
M| 5 [V76o| 38.47366 Sm =1979743 | 22.86010 =a
N| 5 |V765] 471440 Sn==94.51183 | 27.04880 = &
O| 5 |V70| 689199 So=31.40382 | 3341928 =¢
Pl 5 |Vi75| 112587 | Sp==42.65753 | 44-162834 =d
Q] 5 |V78o| e2.1655 Sq == 64.82305 | 65.82804 = ¢
R{ 5 V85| 658171 Sr=—180.6401 | 131.1450 = f



TasLe No. II.

In which the angles of the sections are inferred from the given weights thereof, by the rule demon-
strated in page 27 of the First Part of this Tract, and proportional o the versed sines of a circle
terminated by a horizontal line. The angle of the first section A°== 4°, and the initial pressure
parallel to the horizon == 11.48005; a the pressure on the lowest surface of the first section

== 11.438%71.

Sections, - Weiglx:isoii the| Tang. of the angles of the sections, Anfelslsioc:fs the | Angles of the abutments. | Pressures on the lowest surface of cach section.
| Cotang. A°= 11 48c05 = p’

A o= 1.60000‘?‘:—-’%@%’? tang. A% 5° o o"[V'= 5° o' o” p= 1147871

B b= 1-38053%: tang. B 6° 45" 53"|V: = 11° 45’ 53" g = 11.67533

C c= 2.51922‘-’{—1—3—’2—9% = tang. C11° 26/ 1.9"’ Vo= gg" 12" 12" == 12.48599

D d=| 4.40742 ﬁﬁ%&% =tang. DY15° 57" 5"|V'=39° 9’ 17" § == 1474004

E ¢e= 7.03074{-;—?-%': tang, E15° 52' 6"\V =55° 1’ 2g" t= 19.93919

F f=={to.g6g22 t—{%f—%)ss'irv, = tang. F°11° 48’ 25" |V == 66° 49’ 48" V= 29.05015

G g=114.89746 %—;;—-Y%L- tang. G| 7° g7’ 48" |VE =74 27’ 36" u= 42.66408

H b =19.8048¢ %ﬁ%:tqng. H°| 42 47" 14 \VE=79° 14/ 50" w= 01.26446

I i=124.89556 ;%%—; = tang. I g° g’ 24|V = 82" 18 14" r = 85.85309

K k=|30.28g42 ;—k_ﬁ———‘:ss‘—nv—v— =tang. K| 2° 1’ 5"\V*=84°19' 19" y=1 i15.4%08;1.




TasLE No. II1.

In which the angles of the sections are 1°, 2°, °, &c. making the
angles of the abutments 1°, 3‘, 6°, 10°, for inferring the Weighté
of the successive sections and the sums thereof, with the pres-
sures on the lowest surface of each section, as computed from

the general rules in page 15, as they are inserted in the 5th,
6th, and 7th columns of this Table.

-{Angles between the
Angles of| lowest surface of
the sec-| each section and [Weights of the suc- {Weights of the succes-
1 tons, the vertical, or] cessive scctions, sive semiarches.. | Pressures on the abutmentns.
angles of the
abutments.
Al 1| V| 1° | 1.000000 | 1.00000 |p=757.29869
Bl 2 | V| g | 2002440 | go0244 |¢==57.36859
Cl g | V©| 6 | 8018978 | 6.o2141 |7 =57.60538
D{ 4 | V¢! |10 | 4080847 | 10.10176 | s =58.17374
El 5 | Vo |15 | 5249081 | 15.35079 |1 =59.810g0
F| 6 | V/ )21 16640753 | 21.99154 |v =61.86580
G| %7 | V& | a8 | 8470050 | 80.46159 |u == 64.88482
H{ 8 | V& |36 | 11.16197 | 41.62856 |w="70.81421
I{ 9. | Vi |45 | 1566635 | 57.28991 |z =—=81.02014
K| 10 Vi1 55 | 24.52854 | 81.81845 |y =99.88185
L1 | VI [ 66 | 4685674 | 128.6751 |2z =1408525
Mj12 | V= [ 78 | 1408525 | 2695276 |a=2755490



TasLe No. IV.

In this Table the angle of the first section A°== 5°,and the angles
B, C°, D°, &c. are assumed of any given magnitude, taken at
hazard = 6°, 8°, 12°, &c. makmg the angles of the abutments
=5, 11° 19’, 31° and p = 11.4737, &c. The initial pressure

P = 11,48005.

Angles contained
between the lower

chghts of the semi-
arches, found by

Entire pressures on the
lower surface of each sec~
tion, considertd as an

§ Angles urfaceof cachsec- calculating from| abutment, found by cal-
£ | of the fiion and the verti-| Weights of the sections. | thevaluesinserted| culations from the values
< isectionsfcal line. in page 14 of the| for the pressures inserted
vl [t e Nilvabit
Al 5| V= 5°|a=1.000000 | 1.00000 | 11.478%71 =
B| 6| Vi=11|b=1.221776 | 2.22177 11.%2;372 ~_—..2;
Cl 8| Vi=1g9|c=1718895 | 38.93567 | 12.08864 =17
D| 12 | Vi=g1 [d=2.932180 | 686785 | 18.33465 =s5 .
E{10| Vi=41 | e==3.068117 | 9.93596 | 15.14492 =1£
F| 9| V=30 |f=g685800 | 13.62176 | 17.78193 = v
G| 4| VE=54 | g ==2.110300"| 15.78206 | 19.44585 = u
H 2| V= 56 | h=1.213626 | 16.94569 | 20.44014 = w
Il 1| Vi=py | i== .654988 | 17.6006% | 20.98633 =z
K| . 7| Vt=64 | £ =15.884303 | 23.43498 | 26.07373 =3y
L| 4 [ V=68 | ] =4.855258 | 28.29c23 | 30.51143 ==
M| g | Vi=71 |m= 4904875 | 83.19511 | 85.10776 = a
N| 5| V=76 |n=12.64806 | 45.84317 | 47.24652 = b
Of 12 | V'==88 | 0 ==281.4682 | g27.3113 | 327.5108 =¢
P| 1| V2=89 | p =ge¥.5107 | 654.8220 | 6549206 = d



TasLe V.

Shewing the angles of the wedges in an arch of equilibration, in' which the weights of the several sections are
== 1, the angle of the first section == 15°; the initial pressure parallel to the horizon p’ = 8.73205, and the
pressure on the lowest surface of the first section.— p = g.86g70.

Weights
of the
sections,

Sections,

Tang, of the angles of the sections,

Angles of the

sections,

Anglcs of the abutments.

Pressures on the lowest surface of cach sectiond

a — 1

a X cos.:V°
7 ¥axsnve

- tarig. A°

15° o o,

Vi==15° o' o”

Cosec. A = p=g.86g70

b x cos. Ve -

SO Reos VE . B°
p-{—bxsin.V“"_"tang'7B

—

18°11'12" .

Vé=28°11/12"

4284170 =¢

¢ % cos, V¥

—— " 0
TFex v = g C

oo
peseeml

10°g6" 25"

Ve=38"47' 87"

4788387 =r

8
-

_d X cos, Vo ™o
T d % ve = @ng. D

=

811" 24"

Vd;_..: 4_.60 591 4.11

54770659 = s

I

e x cos. V4
— e
§S e x sin, V¢

== tang. E°

e
ot

6°16" g8”

Vq:_ 530 15/4211

6.289287 =1

l

S % cos. V*

— $a o
Tr %y = g F

Il

4’51 22"

Vf: 580, 7/ 4(11

7.065979 =v

g x cos. V/

o
THg % ey — g G

3’ 49" 8"

Ve 61°56' 7"

7.982716 =u

@
o) 0 |
l

I

b
bxcos V_— tang, H°

w4+ b xsin, Vo

3° 3! 1 8//

Vi=06459'25"

8.82%677 =

I
ey

i x cos, Vi

— °
iRy = @ng 1

|

2”29’ 58"

Vie=67"2818"

9748980 =z



TasLE No, VI,

Shewing the angles of the several sections, in which the weight of each of the sections == 1, and
the angle of the two highest sections == A®; in each semiarch = 5° the initial horizontal

pressure == cotang. 5° ==.11:43005; and therefore the pressure on the lowest surface of the
first section == cosec. 5°== 11.47371.

Sections,

Weights
‘of the
sections.

“Fang. of the angles of the-sections:

Angles of the
sections. .

‘Angles of the abutments,

Pressures on the lowest
surface of each section,

1

“a % cos. V°

< O—— ‘ oh——
FraXe e = ang AT=

o

5 OI O/I

Va= 50 O’ O"

p = 1147871

P+ b X sin. Ve

b x oo Vi tang. B =

4° 55 8o

Vi= 955 30"

q == 11.60380

I

e x cos. Vb

— \ '°.:—.,
TToxaw —wng O =

4 406

5311 .

Ve==14"42'28"

r = 11.81%728

Y
l

7 + d x sin. V¢

A xcos Vi tang. D°=

4 84/

52"’

Vé=19"17" 15"

$ == 12.10992

e X, cos, V4

- Sy B on—-
S+ exsn VT tang. K’ =

4 20’

20/! -

Ve=2g"37" 5"

! == 12.4/7598

S % cos. Ve

et o-——n
YFyryTaT =tang. F° =

4 4

V= 27" 41" 46"

v == 12.90929

g % cos. V/
v 4 g XsingV/

== tang. G’ =

3 47

Ve=g1° 29’ "2”

U =1340333

Tl Q" gl Ol w] >
]

b » cos. Ve

—— °.~
T = g Ho=

g’ 80’

Vi=34"59' 17"

W = 135;:5167

[T

w i X sin. V¥

ixcos VP tang. [° =

8" 18 42"

Vi — 380 12! 5911

T =14 54815

~
e
I

x + k X sin. V¢

k % cos. Vi = tang. Ko =

20 57I 52”

Vk_:_ 4'10 10151//

y=15.18711

! x cos. V#

m— o-—-—
T smvr = g L=

20 43/ 1 ol’

Vi=48"54' 1"

% = 15.86340



TarLe No. VII.

Containing the weights in an arch of equilibration, in which the
angles of each section are = ¢° 3o’ 0”, the pressure on the lowest
surface of each section ; the initial pressure parallel to the horizon
== cotang. 2° go’ == 22.90g76 = p’; and the pressure on lowest
surface of the first section = cosec. 2° go’ = 22.92558.

Sections ﬁ??h:: Angles of the Weights of the | Sums of the weights of the [Pressures on the lowest
sections. abutments. sections, sections. surface of each section.
A |2 80|V = 2 30| 1.00000 Sz = 1.00000022.92558 = P
B |2 go|VE= 5 o] 1.00482 |Sb == <.003820/22.99125 =¢
C |2 g0V = 7 go| 1.01151 |S¢ = g.015331[28.10140 =T
D |2 goVi=10 o 1.02822 |Sd = 4.038552123.25714 =5
E |2 g0o|V- =12 go| 1.08909 |Se = 5.077642/23.45986 =1
F |27g0|W =15 0] 1.05940 |Sf = 6.18704728.71172 =¥
G |2 30[VE =17 go| 1.09448 [Sg = %.221530/24.01526 =u
H |2 go[VP=120 of 1.11476 [Sh == 8.336290124.87368 = w
1 |2 go|Vi=22 go| 1.15076 |Si = 9.487050/24.79086 = x
K |2 g0VE=25 o] 1.19315 Sk == 10.68020 |25.27151 =3
L |2 g0V =27 30| 1.24874 |SI = 11.92394, |25.82129 =% .
M |2 go|V*=30 o 1.29956 |Sm=1g.22350 [26.44699 = a
N |2 goV*=32 go| 1.96780 Sn =14.59180 |27.15674=25
O |2 goV'=g5 ©of 1.44608 So = 16.03738 l27.96033 =¢
P |2 30|VP=g7 30| 1.53730 |Sp =1%.57468 28.86956 =4
Q |2 80|Vi==40 0| 1.64386 Sq =19.21854 [29.89874=¢
R 2 30|V =42 30| 1.76889 |Sr ==20.98743 |31.06533 =f
S |2 30|V' =45 of 1.91634 Ss = 22.908%7 |32.39081 =g
T 2 30|V' =47 30| 2.09130 {St = 24.99507 133.90187 =15
V 12 80 V" =50 o 2.30058 [Sv = 2%.29565 |35.63193 =1
U |2 30V* =52 30| 2.553!2 |Su = 29.84877 |87.62855 =&
W2 go|Ve=55 o 2.85112 Sw = g2.70989 |39.93149 =1/
X |2 goVx=y57 80| 8.25182 Sz = g5.95171 |42.62755=m
Y |2 g0V =60 o 871877 Sy = 39.67048 4580753 =1
Z |2 go[V*=062 30| 4.32724 |Sz == 43.99772 |49.60224,= o0
A le golVe =65 0 511958 182 = 49.11780 |54.19492 =p
B |2 go|Vt =67 go| 6.17727 |Sb = 55.29457 |59.85041 = ¢
C (2 go[Ve=70 o0 7.63300 |S¢ == 62.9275%7 66.96511 = r
D |2 go|Vi=%2 30| 9.71889 |Sd = 72.64146 74.11813 =35
E [2 30|V =75 ©0]12.83654 {Se = 85.47800 88.49336 =1



TasrLe No, VIII,

Shewing the angles of fifty sections, forming an arch of equilibration, calculated from given weights
of the sections when the angle of the first section is one degree = A°; and the weight thereof is
denoted by unity ; the weights of the successive sections éncreasing by equal differences from 1 to 3,
which is the weight of the twenty-fifth section =Z in each semiarch. - The initial pressure paralle]
to the horizon p' = corang. A® == 57.28996: the pressure on the lowest surface of the first section
is = p = §7.29868 = cosecant A®, ' :

Scctions,

- Weights
of the
sections,

]

Tang. of the angles of the sections.

Angles of the
sections,

Angles of the abutments.

Pressures on the
lowest surface of
cach section,

1.000000

a ¥ cos,. V@
42X sin. Ve

= tang. A°

1° o o

Véa= 1° o of

P =57.29868

1.081333

5 X cos. Var
T4 b X sm Ve

= tang. B°

1° 457457

Ve= 2° 4 57457

q = 57-32782

1.1666656

¢ X cos. Vé
¢ ¢ X sin. Vo

= tang. C°

1° 9' 5 1115204_

Ve =

3° 14 48,661

r= 57.38205

1.250000

d % cos. Ve
74+ d X sin. Ve

= tang. D° =

1°14 39,795

Ve = 4°29 28,455

$ = 57.46639

1.333333

¢ X cos. V4
s+ ¢ X sin. Vd

= tang. E®

1°19" 21,558

Ve = 35°48 50”014

t = 57.58614

1.416666

fX cos. Ve
¢4 f X sin. Ve

= tang. F°

1° 23 54",634

VA= 7912 44”648

v = 57.74684

1.500000

g X cos. V/
v+ g X sin. VS

= tang. G° =

1° 28 16’5,987.

Ve =

go41° 1”,638

U= 57-95427

QMBI OIO) =] >

1.583333

h X cos. Ve
u - h X sin. Vg

- ta ng He

1° 32 26,417

V& = 10° 13" 28%,055

w == §8.21435

[
-
i

1.666666

i ¥ cos. V&
w7 X sin. Vb

= tang. I°

1° 36' 20",646

Vi = 11° 49 48’,701

¥ = 58.53326

= { 1.750000

kX cos. Vi .
X <k X sin. Vi

= tang. K° =

1° 39" 57",365

Vi == 13° 29 467,066

¥ = 58.91692

1.833333

-1 cos. V4
5y =k { X sin. V#

— tang. L° =

1° 43" 14,297

VI = 15° 13'; 07,363

% = 59-37154

1.916665

m ¥ cos. V!
z<-m X cos. V!

= tang. M® =

1°46' 9"294

V7= 16° 59’ 9,667

a = §9.90315

2.000000

n X cos. Vo

44 n X sin. Vm

= tang. N° =

1° 48’ 40",404

V== 18° 47 50",071

b = 6a.51760

2.083333

.. 0.X cos. V7
" 40 X sin. VA

= tang, O° ="

1° 50 45",954

Vo = 20° 38’ 36",071

¢ == 61.22067

2.166666

. p X cos Vo
€4 p X sin, Ve

= f}i ng. P° =

1°52' 247,611

V2 = 22° 31 o715

d = 62.01767

2.250000

g X <os. Vg
d 4 g X sin. V¢

= tang. @'=

1° 53 35%611

Vi = 24° 24’ 36,326

€ = 6lz.91365

2.333333

r X cos. Vg ¢

¢ 47 X sin. Ve

— tang. R°

1° 54" 18,421

Vr = 26718 547747

J = 63.91325

2.416666

s X cos. VT
S s X sin. Vr

—

tang, §¢ —

1° 54’ 33,186

V= 28%13 27",033

g = 65.02070

2.500000

t X cos. V5 .
gt Xsin Vs

= tang. T° =

1° 54’ 20,477

Vi = 30° 7' 48410

b = 66.23967

2.583333

% ¥ cos. Vt
h4u X sin. V¢

= tang. U° =

1° 53" 41,334

Ve = 32° 1’ 29",744

i = 67.57337 -

2666666

v ¥ cos, Vu
1 <4v' X sin. V¥

= tang. Vo=’

1° 52" 37,272

Vo= 33° 54" 7",016

k = 6g.02449

2.750600'

w ¥ cos. Vv

k4wt sin. Vo

o= tang. Wo —

1° 51’ 10" 121

V= = 34° 45" 17%,137

l :"70.59525

2.833333

x X cos. V@
TF » X% sin. Vo

= fang. X° =

"1° 44" 22",000.

V* = 37° 34 39"137

mi7z.28737

2.916666

y X cos. Vx
m <}y X sin. V=

= tang, Y° =

147 15",273

Vr = 39° 21 54%,410

1 = 74.10210

N(=[®)|g[<]a{H|e|m|p| |02} 2|~

3.000000

z X cos. Vr,
# -} 2 X sin, V7

—
po—

tang, Z° =

1° 44 52',429

V== 41° 6 46",839

o = 76.04024



TasLE No. IX.

Containing the angles of thirty-four sections or wedges, constituting the model of an arch, No. 2,
the weights of which increase regularly in each semiarch, from 1, which is assumed as the weight
of the first section, to 5, which is the weight of the lowest or seventeenth section from the
summit : the angle of the first section A°= 2° g8’ 0", and B, C, D, &c. are inferred by the rule
in page 15, from the weights of the said sections. The initial pressure parallel to the horizon
== cotang. 2° 88’ = 21.7425 = p’: the pressure upon the lowest surface of the section A, co-
‘secant A° = 21.76555 =p.

Weights of
the sections.

* Tang. of the angles of the scctions,

Angles of the
scctions.

Angles of the abutments,

Pressures on the lowest
surface of each section.

1.00

a x cos. V°®
P+ axsin. Ve

’ 7
2° g8 o,

Ve= 2°g8" o”

| p= 91;76555

L))
I

1.25

b x cos. V@
P+ & xsin. Ve

= tang Bo =

g’ 16) 29"

¢ = 1.50

¢ x cos. Vb
g+ ¢ X sin. V¢

= tang. C=

Vb__z 5054‘199// 

q = 21.85867

30 5'2/ 3911

Vc= 904‘7/ 8”

7= 22.06556

1.75

d % cos. V¢
r 4 d xsin. V¢

4 24 86"

Vi = 14° 1‘1’ 44"

S = 25.4%%39

2.00

e X cos. V4
s 4 e x sin. V¥

= tan;g‘.. E° —

4‘0 501 9//

V;-": 190 1/ 53//

P = 22.95372

f % cos. Ve
t+ f x sin. Ve

== tang. e —=

50, 7/ 16/1

V= 24"’ 9 9

7= ‘2382‘%53

g X cos. V/

v 4 g x sin. V/

= tang.y G°—

50 '14!/ 4.1// ‘

Ve 29° 23’ 50"

| # = 24.95590

==l I B B B B B B w0 B I =
®

b x cos. Vx

u 4 b xsin. V&

= tang. H° =

50 12/ 14//

V}: — 340 36/ 4‘11

1w = 26.4146

ot
~

ixcos. Vb

w4 1 X sin. V7

= taﬁg. i° =

50 ‘11 8:/

Vi ; 39»0‘ 371 12/1

oz —_;'28.29.6445

k x cos. Vi
x 4 k x sin. Vi

=tang. K°=

4 48’ 28"

V& __: 4‘4‘0 2'01 3511

» j; = g0.40220

I »% cos. V#

¥+ I xsin. V£

= tang: Le—=

4(0 21/ 27/[

Vi=y8° 42’ 2”

%= 82.9487

“m x cos. V¢ _
x4+ mX

s O e
——r = tang. Me=

30 57/ 33”

Vr=52°39'35"

a= 3534656

n X cos.V© .
a4 nxsinV®

'::‘ tang. N°—

30 331 2’6{/,

Vn=56° 13I 1//

b = gg. 10209

0 % cos. V™ -
b 40 Xsm. Ve

10 21" |

Varz 590 231 2-211

c.== 42169992

P x 05 Ve
¢+ p X sin. v*

= tang. P°f=

’20 4‘ é{ bl !

V=620 12 22"

L. d ¥"4§6.“.62917

g X cos. Ve o

| g4 d xsin. V2

:‘ talig. Q":

20 29I 4‘21/

V9:64° 42' 4" )

€= 50.87939

o]l mwl o2l ] H] x

7 % cos. VI [,

r4 ¢ X sin V¢

=tang R°=

2° 12’ g1

V=66 54 35"

S = 5544104



TasLe No. X.

Shewing the method of detérmining the points in the vertical line OV, from which lines being drawn to the several
points B,C, D, E, &c, will determine: the positions of the abutments on which the said sections are sustained: when
the angle of the first section A° is assumed = 2° g8, and the angles of the sections B°, C°, D°, &ec. are inferred from
the weights thereof. . The distances OA, OB, OC, &c. being-negative, shew that the numbers corresponding are to be

~ subtracted from the radius OV. ’ : L ‘

.

A B ¢, .| b E TF G

Angles of the abutments - =] 2238 o $e54029% T ot 47 8V 1 agturiay’ L orge ¥ gst 24° o ¢ | 29°23 50"
ﬁﬁgfg at the centre- - - 2"38 o' 5° 16" o 7° 54 o 10° 32" o'’ R 10! g" 15° 4-553" o’ 'l;§° zg’ So”
Differénces of the angles = = | o o o o 38 29" 15y 8 303944 | 50515y 8 21’ 9 | -10°37' 50"
Log. radius = 21.7598 inches P o 1.3376550 1.3376550 1.3376550 1.33765500 . 1.3376550 1.3376550
L0§- sin. differences of angles - - 8.048¢897 8.5172383 .- 8.8053263 9.0093662 © 9.1621545 9.2751%53
Log. cosec, of the angles of the abutments ‘ : 0.987448c - .°-76965°5_ - o.b104225 04866677 ~ 0.3880997 ' 0.3090410
Log. distances from the centre - = L ©.3740927} 0.6245438| . ©0.7533038 0-8336889 0.887909: - 0.925884:
Di;:tances..from the centre - - -|OA = — 0.0000{0OB == — 2.3664/0C = 4"“25,OD = ~ §:6676|0E = — 6.8183)0F = — 7.7252/0G = .-9 85.43?%
Angles of the abutment - e - \ . 34-: 36: 4‘; 39: 37'I xz: 4 z:o’l 35" 48° 42" 2 52° 3¢’ 35" 6013 1*
Angles at the centre - - R 21° 4 O 23° 420 o | 26° 20 o 28° 58" o' 31°36' o 34° 1§ o
Differences of the angles - - - 13° 32" 4" 15° 58 12"’-" ; 18° &' 35" F19° 44 2" 21° o3’ 3‘:5” 21° 5¢ 1"
Log. radius - - - 1.3376550 1.3376550| 1.3376550| 1.3376550 .. 1.3376550 1:2276¢ 0
Log. sin. differences of angles - - 9.3692713 9.4382178 9,4392091 9.5284604 9.5 55006 9.§;§zg§s
Log. cosec. of the angles of the abutments ©0.2457589 0.1953884] - 0.1554521 0.1242034 0.0956070 0 0803211
Log. distances from the centre - - 0.9526852 0.9712612 - 0.9824162 0.9903278 0.9927686 0.9012
Dis>gtan095 from the centre = = - OH = — 8.9677|01 = — 9.3597|0K = — 9.6032|0L = — 9.7797I0M = — 9.8348|ON = i 9'8@%i
| . o p o Q ' R

Arigles of the abutments - - §59° 23 22" 62° 12/ 22 64° 42 4 66° 54’ 35"

Angles at the centre - - - 36° 52" o 39° 30' o 42° 8 o 44° 46 o

Differepces of the angles - - 229 31 22" 220 42/ 22" 22° 34" 4" 220 8 3 5,,

Log.radius i = - - = 1.3376550 1.3376550 1.3376550 1.3376550

Log. sin. differences of angles - 9.5832562 9.5865923 9:5840779 9.?7:%22;7

Log.cosec, of the angles of the abutments 0.0651743 ~ 00532380 0.0437879) 0.0362650

Log. distances from the centre - ‘ 0.9860855 0.9774853 " 0.9655208 0ig501697,

Disﬁances from the centre - - 00 == w §.6847(0P = = 9.4948{0Q_= .= 9.2368/OR == — 8.H160




. TasLe No. XI,

Shewing the method of determining the points in the line OV, taken = 10 inches; from which, lines being drawn to the several
points B, C, D, &c. will determine the position of the abutments on which the said sections are sustained when the angle of the
first section A is assumed == 5%, and the angles of the sections B, C°, D°, &c. are inferred from the weights thereof, assumed
= A=B=C==D, &c. ==1, as stated in Table VI.

A B C D K Iy
Angles at the certre .« - - = - 5° o o 10° o o 15° o o 20° o o 25° o; o 30° o of
Angles of the abutments - - - + 5° o of 9° 55' 30 14° 42 23" 19° 17" 15" 23° 37/ 35" 27° 41" 46"
Difference of the angles - - - - F o® o o' o® 4’0" o® 17" 37" o° 42° 45" 1° 22" 25" 2° 18 147
Log. 10 inches - - - . - =] - - - 1,0000000 I. Lo I. 1.
Log. sin. differences of the angles - - = - - - ‘ 7.1169385 7.7096480 8.0946510 8.3796996 8.6042219
Log. cosec. angles of the abutments - - - - - 0.7635662 0.5953958 0.4810803 0.3971037 0.3327507
Log. distance from the centre’ -  « - - - - 8.8805047 9.3050438 9-57573713 9.7768033 9.9369726
Disgtances from the centre O - - - = - - - OB="F .075946 |OC=F ".20185 |OD =1 .37647 |[OE=7F .59814 |OF == ~.86401
Radius added to the distances from O« - - - - 10.075946 10,20185 10 37647 10.59814 10.86491
Log. distances from the centre - - - - - . 1.00328 1.00868 1.01603 1.02522 1.03602
Log. tang. of the angles of the abutments - - - - 9.24298 9.41907 9.54400 ‘ 9.64091 . 972000
Log.tang. of the angle of the abutments to radius 10 - - - 0.24626 : 0.42775 0.56003 0.60613 0.75611
Tang. of the angle of the abutments to radius 10 - - = Inches = 1.7630 F 2.6776 F 3.6311 F 46359 F 57032
===

G H I K L
Angles at the centre S T L 35° o o 40° o: o: 45° o" o:: 50° o d: 55° o of
Angles of the abutments - - - + - - 31°2¢’" 2" 34° 59" 17 38° 12/ 59 41° 10" 51 43° 541 ¥
Difference of the angles - . - - F - . - 3° 30’ 58" 5° o 43" 6° 47" 1" 849" ¢ 11° ¢ 59"
Log. 10.inches S . - - - - . e = 1. 1. 1.0000000 1. » 1.
Log. sin, differences of the angles - - = - - . 8.7876673 8.9413296 9'0723222 9.1855886 9.2834695
Log. cosec. angles of the abutments - - - . - 0.2821142 0.2415380 0.208% 0.18148¢1 o.1590129
Log. distance from the centre - - - - - . p.0697815 0.1828676 02808900 0.3670739 0_44243;;
Distances from the centre O - - - = - - - OG== 11743 [OH==7F 15235 (Ol = Lgeg3 |OK=z 2.3285 |OL=3F 2900
Radius added to the distances from O . - - - . 11,1743 11,5235 11,9053 12.328% 12,7700
Log. distances from the centre - - - | . - - 1.04821 1,06156 1.07587 1.0608g - 1.10619
Log. tang. of the angles of the abutments - T . - - 9.78704 | 9.84503 9.89618 994193 9-98332
Log. tang. of the angle of the abutments to radius 10 A e s 0.8‘3525 0.90659 0.97205 1.03282 © 1.089§1
Tang. of the abutments to radius 10 - - - - - Inches 12 6 8432 T 8.0049 ¥ 9.37609 F 10785 F 12,289

When the angle of the abutment is greater than the angle at the centre, the upper sign prevails, as in Fig. 8; but when the angle at the abutment is less than the angle of
the centre, the lower sign-prevails, as in Fig. 9.






Plate 1.

Fig. 6.

Fig. 0.







Llate V.




Frg. 15.






