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P R E F ACE.

A PLANfor constructing an Iron Bridge of one arch, to be erected

over the RiverThames, designed by Messrs. Telford and Douglass,

and proposed to the Committee of the House of Commons for the

further Improvement of the Port of London, has excited consider-

able attention, both from the novelty and magnitude of the design,

and the evident advantages to navigation which would attend such

a. structure; yet as some doubts arose respecting the practicability
of erecting such an edifice, and the prudence of attempti,ng it, the

Committee judged it necessary for their own information, as well as

to furnish the House with some grounds by which an opinion might

be formed, to propose the following Queries, which were therefore

transmitted, together with the engraved designs of Messrs. Telford

and Douglass, and the explanatory drawings annexed, to such

persons as were supposed to be most capable of affording them

information.

The following lire the ~ueries that were drawn up and transmitted fo the Perso11J

whose Names are undermentioned. (See Page vi.)

Q. U E R I E S.

I. What parts of the arch are to be considered as wedges, which act on

each other by gravity and pressure, and what part 'merely as weight,
acting by its gravity only, similar to the walls and other loading com-

monly erected on the arches of stone bridges; or does the whole act

a 2



IV PREF ACE.

as one frame of iron, which cannot be destroyed but by crushing its
parts?

~Iery H. Whether the strength of the arch is affected, and in what manner, by
the proposed increase of its width towards the two extremities or abut-
~ents, when considered both vertically and horizontally; and if so,

what form should the bridge gradually acquire?

Ill. In what proportion should the weight be distributed, from the centre
to the abutments, to make the arch uniformly strong?

1V. What pressure will each part of the bridge receive, supposing it
divided into any given number of equal sections, the weight of the middle
'section being known; and on what part, and with what force, will the
whole act upon the abutments?

V. What additional weight will the whole bridge sustain, and what will-
be the effect Qf a given weight placed on any of the fore-mentioned
sections?

VI. Supposing the bridge executed in the best manner, what horizontal

force will it require, when applied to any particular part, to overturn it,

or press it out of the vertical position?

VII. Supposing the span of the arch to remain the same, and to spring ten
feet lower, what additional strength would it give to the bridge; or,
making the strength the same, what saving may be made in the mate-

rials; or, if instead of a circular arch, as in the Print and Drawings, the

bridge should be made in the form of an elliptical arch, what would be

the difference in effect as to strength, duration, and expense?
VIII. Is it necessary or adviseable to have a model made of the proposed

bridge, or any part of it, of cast iron; if so, what are the objects to

which the experiments should be directed, to the equilibration only, or
to the cohesion of the several parts, or to both united, as they will occur
in the iron work of the intended bridge?

IX. Of what size ought this model to be made, and in what relative
proportion will experiments on the model bear to the bridge when

executed?

X. By what means may ships be best directed in the middle stream, or
prevented.from driving to the side, and striking the arch; and what is the

probable.consequence of such a stroke /

.
XI. The weight and, lateral pressure of the bridge being given, can
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abutments be made in the proposed situation, for London Bridge to resist
that pressure ~

QEery XII. The weight of the whole iron work being given, can a centre or
scaffolding be erected over the river, sufficient to carry the arch,without

obstructing those vessels which at present navigate that part?

XIII. Whether would it be most adviseable to make the bridge of cast
and wrought iron combinea, or of cast iron only; and if of the latter,

whether of the hard and white metal, or of soft grey metal, or of gun

metal? .

XIV. Of what dimensions ought the several members of the iron work to
be made, to give the bridge sufficient strength?

.
XV. Can frames of iron be made sufficiently correct to compose an arch

of the form and dimensions as shewn in the Drawings No. I and 2, so

as to take an equal bearing in one frame, the several parts being con-

nected by diagonal braces, and joined by iron cement, or other substance?
N. B. The Plate XXIV. in the Supplement to the Third Report, is
considered as No. I.

X VI. Instead of casting the ribs in frames of considerable length and
breadth, as shewn in th~ Drawings No. I and 2, would it be more ad-

viseable to cast each member. of the ribs in separate pieces of considerable
length, connecting them together with"diagonal braces, both horizontally
and vertically, as in No. 3'?

XVII. Can an iron cement be made that wiJI become hard and ,durable;
or could liquid iron be poured into the joints?

XVII I. W QuId lead be better to use in the wh01e, or any part, of the
joints?

XIX. Can any improvements be made upon the Plans, so as to render the
bridge more substantial and durable, and less expensive; if so, what are

those improvements?

XX. Upon considering the whole circumstance of the case, agreeably to
.the Resolutions of the Select Committee, as stated at the conclusion of
their Third Report," is it your opinion, that' an arch of 600 feet span,

'" The Resolutions here referred to are as follow:

That it is the opinion of this Committee, that it is essential to the improvement
and accommodation of the Port of London, that London Bridge should be rebuilt,
on such a construction as to permit a. free-passage, at all times of the tide, for ships
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as expressed in the Drawings produced by Messrs. Te1ford and Douglass,
on the same plane, with any improvements you may be so good as to
point out, is practicable and adviseable, and capable of being rendered'a
durable euifke ?

Q!1ery XXI. Does the Estimate communicated herewith, according to yourjudg-
ment, greatly exceed, or fall short of, the probable expenee of executing

the Plan proposed, specifying the general grounds of your opinion?

After paying every attention to the subject which the importance

of it demanded, it appeared for many reasons absolutely necessary,

for furnishing satisfactory answers to the above Queries, to inves-

tigaJe the properties of arches from their first principles. The

substance of these properties is comprised in a Tract, entitled a

Dissertation on the Construction and Properties of Arches, pub-

lished in the year 1801, -and continued in the present r~reatise, now

offen~d to the Public as a Supplement to the former Tract. The

of such a tonnage, at least, as the depth of the river would admit at present, be-
tween London Bridge and Blackfriars Bridge.

That it is the opinion of this Committee, that an iron bridge, having its centre
arch not less than 65 feet high in the clear above high-water mark, will answer
the intended purposes, with the greatest convenience, and at the least expense.

That it is the opinion of this Committee, that the most convenient shuation for
the new bridge will be immediately above St. Saviour's Church, and upen a line
1eading from thence to the Royal Exchange. '11<

I. Dr. Maskelyne,
2. Professor Robertson,

3' Professor Playfair,
4. Professor Robeson,
5, Dr. Milner,
6. Dr. Hutton,
7, Mr. Atwood,
8. Colonel Twiss,
9, Mr. Jessop,

. See the Report nom the Select Committee upon tJ:leIm'provelp~p.tof th~ Port of
London. . . .

ANSWERS BY

IO. 'Mr. ReIlnie~
11. M. WattJ
12. Mr. Southern,
13- Mr. Reynolds,
14.. Mr. W-ilkinson,
IS. Mr. Bage,
16. General Bentham,
17. Mr. WUson.
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reader will perceive that most of the propositions in these Dis-
sertations are entirely new, and that they have been verified and
confirmed, by new and satisfactory experiments, on Models con-
structed in brass by Mr. Berge of Piccadilly, whose skill and
exactness in executing works of this sort are well known to the
Public. Considering the importance of the subject,. and the di-
versity of opinions which has prevailed respecting the construc-
tion of arches, and the principles, on which they are founded, it
seems requisite, that the final determination of the plan for erecting
the bridge of one arch. in question, should be subjected to a
rigorous examination, in order to discover if any, and what, errors
might be found in them. The best means of effecting this ap-
pears to be by a publication, in which the propositions recom-

mended for adoption being fairly stated, every person, who is of a

different opinion, may have an opportunity of eXplaining his ideas

on the subject, and of suggesting any different modes of construc-

tion, that are judged to be less liable to objection. To persons

interested in these inquiries, it may be satisfactory to be inform ed,

that the properties of arches, which are comprised in this latter

Tract, have been found, on a careful and minute examination, and

comparison, in no instance inconsistent with those, which are the

subject of investigation in Part the First, but rather appear to

strengthen and confirm the theory before published, allowing for

the differences in the initial force or pressure, expressed in page .2,

and in Figs. 1 alid 2, inserted in this Tract, representing the diffe-

rent dispositions "of the key-stones, from whence conclusions arise

very different from each other, although all of them are strictly

consistent with the laws of geometry and statics; It is particularly

observable, thatChe deductions of the weights and pressures arising

from a supposition of a single key-stone, do not exhibit conclusions
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which are strictly true, but require the addition or subtraction of

certain differences * to make them consistent: whereas on the more

correct supposition of two key-stones, corresponding with the case,

in which the initial pressure is in a direction parallel to the hori-
zon, the conclusions derived from this principle are geometrically

true, requiring no correction or alteration whatever; being> in

themselves certain and unalterable propositions. PraGtical ,infer-

ences may be deduced from adopting either the principle of a

single key-stone, or the more correct one of two equal key-stones,

the differences, which are the consequences, whether subtracti've, or

additive, being so extremely minute as not to be made sensible in

practice. With respect to the principal object of these inquiries,

those which are expressed in the 19th and ~oth Queries, deserve
particular attention. .

" Can any improvements be made upon the Plans, so as to ren-:

" der the bridge more substantial and durable, and less expensive;

" if so, what are those improvements?"

" Upon considering the whole circumstance of the case, agree-

" abIy to the resolution of the. Select Committee, as stated at .the
Hconclusion of their Third Report, is it your opinion that an arch of

" 600 feet span, as expressed in the drawings produced by Messrs.
"TeIford and Douglass, on the same plan, with any improvement

" you may be so good as to point out, is practicable and adviseable,

" and capable of being a durable edifice?n
It seems probable that the best plan of rendering the bridge a

substantial and durable edifice, would be by making. the weights
of the several sect~ons,such as those plans which are numerically
expressed in Tables No. V, VI, VIII, IX, annexed to Part H. in
this Treatise, and their pressures on the abutments, balance each

. See Table VI. at the end of Part the First.
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other, so that the whole building, when erected, may lilave a dis-

position to remain at rest; which will be the property of all the

structures of arches, which are numerically expressed in the Tables,

that are subjoined both in the First' and Second Part of this Trea-

tise. In some of the plans, particularly those which are drawn in

a circular form, inconveniences arise from the figure thereof~ that

render them unfit to be adopted for the purpose of erecting a

bridge: to obviate this difficulty it might be advisable, that the

curve of the arch should not be formed of a circular or other spe-

cific figure, but that the line coinciding with the road-way might

be either rectilinear, or a curve not greatly deviating from a right
line, so that if the bridge should be constructed according to any

of the plans pointed out in the preceding pages, the advantages

therein propoii:ed, would be realized, without the inconveniences

arising from a ci-rcular form.

It may be considered as a matter of surprise, that on a subject

so truly experimental as the construction of arches appears to be,
so very few accounts of original experiments on the subjeL t are to

be found, in the philosophical transactions of this or other couIltries

of Europe, or in the literary publications .which have appeared in

the worldcluring the last and preceding centuries; it possibly may

be objected against placing any reliance on exp_Timents of this

sort, that they are formed on a supposition, that liO impediment is

caused by&iction, cohesion, and ten~city of the surfaces in con-

tact; whereas in reality those powers operate in preveming the

surfacesITom freely sliding over each other, and consequently an

adequateaUowance ought to be made on this account in forming

inferences from these experiments: but it seems certain, that in

whatever degree friction, and the other impedim~nts to motion,

may act on the models, it is by rendering the whole structure

b
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more secure fi'om disunion. The effects therefore of similar or

other impedilnents, such as may be supposed to take place in the

construction of real bridges, will have a much greater effect

when they 'consist of iron bra~es and fastenings of va~ious kinds;
by which all efforts to disunite the sections are immed~ately

counteracted.

The effects of this will be not only to prevent the separation of

the sections by any casual force, tending to disunite them, but will

likewise secure the edifice from the more silent, but not less destruc-

tive assaults of time: for when the sections of an arch are not duly

balanced, every heavy weight whi{:h passes over the road-way,

even the motion of a lighter carriage, must create a tendency to

separate the sections by degrees, and at length entirely to disunite

them; an evil to be remedied only by a requisite equilibration of

parts of the bridge.

On a review of the whole, whether the subject is considered theo-

retically, as depending on the laws of motion, ()r practically, on the

construction of models erected in strict conformity to the theory,

it would seem difficult to suppose, that any principle for erecting

a bridge of one arch would be adopted, that is very different from
those, that have been the subject of the preceding pages: never-

theless, as the most specious theories have been known to (ail, when

applied to practice, in consequence of very minute alterations in the

conditions; and as it is scarcely possible to frame experiments ade-

quate to the magnitude of the intended structure, the Author of this

Treatise thinks it incumbent upon him to state freely the doubts

which remain upon his mind, respecting the construction of the

bridge intended; suggesting, at the same time, .such ideas, as have

occurred to him, which probably may contribute to remove or to

explain those doubts; particularly by causing an arch to be erected,
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the span of which is from 20 to 50 feet, the expense of which would

be of little moment in the case of its success; and, on a supposi-

tion, that t~e experiment should fail, the imp9rtant consequences

that would probably arise from the observation of such a fact

would, in the opinion of many persons, amply compensate for

its failure. A doubt occurred during the construction of the flat

arch, * whether i,he angles at the summit were most conveniently

fixed at 2,°38' 01/, or whether those angles should not subtend 5°,
10°, 158, or any other angles, which might better contribute to the

strength and stability of the entire structure. Since the materials,

of which the Models are formed, are of a soft and elastic nature,

which yields in some degree to the force of pressure; this circum-

stance, joined to that of making the angle subtended at the centre

of the circle no greater than 2,°38' 0", prevents these sections from

having much hold on the contiguous sections above them, and

creates some difficulty and attention in adjusting the Model No. 2,

to an horizontal plane, suggesting the necessity of forming the

angles of the first or highest sections at 5°, or some greater angle,
by whic~ the holdings would be more effectually secured; but it

is to be remembered, that this source of imperfection could not
exist if the sections were made of materials perfectly hard and

unelastic; and the Model having b~en constructed as an expe-

riment, it seems proper that the angles of the first sections should

be formed on the smallest allowable dimensions, in order to ,ob-

serve more distinctly the advantages which would arise from
making the angles larger in any subsequent experiment, if any

should be approved of, previously to a final determination of the

plan to be adopted for erecting the iron bridge. It is to be

. The Model No. z, so calkd to distinguish it from the Model No. I, in the form of

:ilsemicircular arch.



XII PREF ACE.

observed, that no imperfection of the kind which is here spoken of,
takes place in the ;\1odelof the arch No. 2, after it has been care-
fully erected : but a larger angle seems to be preferable for the
angles of the firs.~sections, from the difficulty w.hich subsists1 at
present, in adjusting the Model of the arch No. 2, to the true
hori.zontal plane, so much exceeding the trouble and attention in
adjusting the Model No. 1.

.

Many thanks and acknowledgments are due to Mr. Telford and

several other engineers, who have had the goodness to favour the

Author with their able advice and assistance, in answering such
questions as he had occasion to propose to them, respecting the ori-

ginal plan of this Treatise, and subsequently concerning the prac-

tical experiments, accounts of which are contained in it.

G. A.

London,

29th November, 18°3'



A

DISSERTATION
ON THE

CONSTRUCTION AND PROPERTIES
OF ARCHES.

PART 11.

T HE sections or portions of wedges which constitute an arch may
be disposed according to two several methods of construction*
which are represented by Fig. 1 and Fig. 2. In Fig. 1 the highest
section, or key-ston~ is bissected by the vertical plane VO, which
divides the entire arch into two parts, similar and equal to each
other: In Fig. 2, two highest sections A, A, similar and equal to
each other, are placed contiguous and in contact with the vertical
line VO. The former plan of construction has been before the
subject of investigation, in a tract on arches, and published in the
year 1801. It remains to consider the properties which result
from disposing the sections according to the last-mentioned plan
in Fig. 2.

.

The first material circumstance which occurs is the difference
in the direction of the initial pressure, which in - the former case,

Fig. 1, was inclined to the horizon in the direction EQ perpendi-
cular to AB; whereas, according to the latter disposition, Fig. 2,
of the key-stone, the initial pressure is parallel to the horizon in

B
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the direction QR. In any arch of equilibration in which two equal
and similar sections occupy the summit of the arch, the initial

force or pressure is parollcd W th~ hc:>!i~n, and is to the weight

of the first section as radius is to the tangent of the angle of that

section.

For let the two highest equ~l sections, A, A, be represented by

Fig. 3, when they form a portion of an arch of this description;

let Vv Ta represent one of these equal highest sections. Through

any point Q, of ~the line VD, draw QP perpendicular to the line

TO. QR,paralleI, and PR p~~pendicular, to the horizon; then will
"

,
the three forces, by which the wedge A is supported in equilibrio,
De represented'In qtial1fity"an:ddrrection,by the Hnes QP, QR,
and PR; of which, QP denotes the pressure between the surface
TO. and. tbe surf.q.ceof the section B, which is contiguous to it.
QR h~the force which acts in a direction parallel to the horizon,
and isc,ounterbalanced by the reactiol1 of the other section A,
similar and equal to the former: and P"Rmeasures the weight of
the section A. Because PQR is a right-angled triangle, the follow-
iJ?gproportion will be derived from it: as the horizontal force QR
is to the weight of the section A, or PR, so is radius or QR to PR.
The tangent of tbe anglePQR =VOT, which being equal to the
angl~ :contained by the sid~s Vv, a1; of the"wedge, ~,may be de-
noted by AO: finally, if 'the weight of 'the section A be put equal
to w, we shall have the horizontal force at the summit of the arch

= tL wAO= W x cotan g. AO,radius being = 1; from this deter-ang. .

mination the following construction~is derived: having given the
sev.eral angles of the sections AO,BO,Co, DO,together with the
weight of the first secti9n, A; to ascertain by geometricaL con~
struction, the weights of the successive sections B, C, D, &c.
when the arch is balanced' ip equilibriQ. AA, AB, BC,' CD, &c.
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represent the base~ of the sections in Fig. 4: through the points
A, B, C, D, &c. draw the indetinitelines Aa, Bb, Cc, Dd, &c.
perpendicular to the horizon; through any point X, in the line
AF, draw the indefinite line XZ parallel to 'the horizon; let A a
denote the. weight of the section A; and through the point a
draw a z, at right angles to .AF; and in the line XZ take a part
XM, which shall be to the line A iJ;as radius is to the tangent of
the angle VOFor A~; so shall XM represent, in quantity and
direction, the pressure betweep the first section A and the vertical
plane VG; or, when both semiarches are completed, the line XM
will represent the pressure between the contiguous vertical sur-
faces of the two highest sections A, A. Through the point M
draw MRV perpendiculax to OF; and in this line produced, take
l\1N = to z a; qnd make QV = to RN, w:hichwill be to radius,
as radius is to the sine of VOA or AO. For because the line XM
is to A a as radius is to the tangent of VOA or AO; if the sin.
of Aa be put =s, 'and, the cos. AO= C to radius 1, this will give

, ,

RM -- ~ f1:: ~; and, because M N .-"-z a = Aa x,s" ~~nd R M

=
Aax>c7.;RM+MN(jrRN=Aax~ =VQ=Aa';which

$

"

s ,

,'"

,$

quantity is to radius, as radius is to the sin. of VOA or N': and VQ

or RN = Aa. is the measure of the entire pressure on the abut-
s

ment OF. ,

To construct the weight of the ,section B, and the pressure on

the 'next abutmentOG, throug,h the point Q, draw KT perpendi-
cular to GS, and,from any, point B, in the line BG, set off Bz ~

to VS: through the point z draw zb perpendicular to Gb cutting
off Bb, 'which will be equal to themeasureof the weight of the sec-
tion B; from the point Q in the line KT produced'set offQT = to

B2
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~b: also in the line KT, make K~ = to ST, then Kz or ST is the
measure of the pressure on the abutment OG of the section C. On
the same principles, the weights of the sections C and D, as well as
of the sections fonowing, are geometrically constructed, Czbeing
set off = WK, and. Dz = to nl; from this construction, when
completed, the general expressions for the weights of the sections
are inferred, which are inserted in the lsth and 14th pages in the
former tract, except that the initial pressure, arising from a diffe-
rent disposition of the key-stone, represented in Figs. 1 and 2, in
consequence of which the initial pressure is P' = w x cotang. AO,

instead of p = ~r- Ao in the former tract. .2 XSln. 2

In ihis manner the weights of the. several sections and pres-
sures on the abutments, are found to be as underneath.
Sect- Weights of the sections on the
ions. vertical ab<ltIIlcnts.. Pressure,.

P'~w X cotang. AO

A=w p = P'x COS. Aa
+ P'x sin.

AO x tang. VII

B = P x sin. Ba X sec. Vb q = P x cos. BO+ p x sin.
BOx tang. Vs

C :.q x sin. Co x sec. Vc r' q x cos. Co + q x sin. Co x tang. Ve

D=r x sin. DOx sec. Vd s.= r.x cos. DO+ r x sin. DO.x tang. ¥d

E = s x sin. EOx ~ec.Ve t = s x cos.EO + s x sin. EOx tang. ve
When the angles of these sections are equal to each other, and

consequently Aa = BO=Co-..:.DO; &c. in this case, the angles of
the abutments will be as follows, Va= Aa, Vb= 2Ao, Vc= SAc,
and so on.

On these conditions, the weight ,of each individual section, as
well as the pressures on the corresponding abutments, and the
weights of the semiarches, may be inferred by the elementary rules
of trigonometry, from the general expressions above inserted.

Weights of the sections, and the pressures on the corresponding
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abutments, when the angles of the sections are equal each, and

= to AO,sin. of each angle = s, cos.= c, radius = 1.

Weights of the. sections.

A-I.

B=~
ZC~- I

Pressures on the' lowest surface of each section.

P'= : = cotang. AO
p = seX ; =cotang.Ax sec. A

, I
q =--; X Z'~-1 . . =cotang. A Xsec. 2A

= cotang.A x sec. SAC-'- J

- ZC~-IX4-c~-3

D=
1

4c"-3 x Sc4--8c"+ I

C I. r=-x .
s ¥'-3C

C I
S=-x s 8c4-8c'+ 1

=cotang.Axsec.4A

E = - t=!... x I cotang.A xsec.5A
16c4-20C"+5xsC4_8c:>+1 S 16c5_20C3+5'

Sums of the weights of the sections, or weights of the semi-

arches, when the. angles of the sections are equal to each other;

and = to AO, sin..Ao = s, cos.Ao= c, radius= 1.
Sums of the weights.

A=l .
A+B

A +B + C . = :~ ;
. - 8c4-4C'ZA + B + C + D = 8&4-8,,,+1 = cotang.A x tang. 4A

A B
.

D J6c4-IZc"'+1 A+ + C++ E = 16&4-20C"+5= cotang. x tang.SA.
When the angles of the sections, instead of being equal to each

other, are of any given magnitude, the general demonstration of

the weights of the sections, when. adjusted to equilibration, and

the corresponding pressures on the abutments, will require. further

examination of the princi'ples on which the construction is formed;
. with the aid of such geometrical propositions as are applicable to.

the subject.

. 1 . . = cotang. A x tang. A
2d". = ~ = cotang.A x tang. 2A

= cotang. A x tang. SA
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To consider, first, the pressures on the successive abutments

which are, according to the construction, OV, OF, OG,. OH, &c.
it is to be proved, that the pressure on the vertical abutment
OV = cotang. AO: the pressure on the abutment OF = ?o-
tang~ Aa X sec. A; the pressure on OG =cotang. Aa X sec.

AO+ BO; and the pressure<>n OH = cotang. AOXsec. AO+ BO+ Co,

and so on, according to the same law of progression; radius being

= 1, the weight of the first section being also assumed = 1.; if
the weight of the first section should be any other quantity 'lV,the
pressures inferred must be multiplied by w. .

The verticalline OV being parallel to the severallines Aa, Bb,
Cc, Dd, &c. it appears that the angle zAa = FOV = AO, also zBb

" GOV=== Aa + BD, zCC = HOV= AO+ BO + Co, zDd = AO

+ BO + Co + DO, likewise the angle XMV =: AD, VQK =Bo,

KtI = Co, INn = DO,&c. ~ .

From these data the following determinations are obtained;
the entire pressure QV'on the "abutment OF, consists of two paits,
namely; RM = the wedge pressure; secemdly, MN = za, which
is that part. of weight of the section A resting on the abutment
FA, which is to the whole weight as za is to Aa, or as the sine of

t~ angle AOis to radius: the entire pressur~ therefore' upon
OF = RM + MN: but MR -MX x cos. A, and .MN = za
x tang. A to radius zA - sin. A: the pressure, therefore, on

the I.

.I' n OF - Aaxcos."A + A
..

A
_Aa xcos."A + sin."A. e - . A a x SIn. - "A-srn. . - srn.

. Aa
b . Aa= iin.'A: ut sin.A = cotang. A X sec. A; we have therefore ar-

rived at the following determination: the entire pressure on the
abutment OF = cotang. AO x sec. A, when the weight of the
first section is assqmed = 1.

.
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The pressure on the abutment OG, that is tK, is to be proved

= cotang. A x sec. Ao. + Bo..
.
The pressure QV on the abutIJ1entpreceding, or OF, has been

&hewn =cotang. AQx sec. A; but as the angle VQK =Bo, it

follows that QS = cotang. Ao.x sec. Aa X cos. BO,and VS ' co-
tang. A x sec; Ao.xsin. W; but by the construction VS = Bz: there-
fore Bz = cotang. AQ x sec. AO x sin. BC: and because the angle
%Bb = A. + W, zb is to Bz (cotang. Ao.x sec. Ao. x sin. BO)

as tang. Ao.+ Bc is to radius: the result is, that z b = cotang-

A x sec. A x sin. B x tang. A. + BC: and since SQ' cotang. AO

x sec. A x cos. BQ; it followsthat the entire pressure on OG = SQ
+ QT = KQ = cotang. Ao. x sec. AQ x cos. BQ + cotang. A x sec.
AO x sin~ BQ x tang. AQ+ BC. The subsequent geometrical propo-

sition will verifythis construction, and prove at the same time, the'

relation, in general, of the successive secants of the angles which
. ,

are proportional to the entire pressures on the successive corre-

sponding abutments.

Given any angle of an abutment A., and the angle of the sec-

tion Bo.next following, it is to be proyed that sec. AOis to sec.

A + B as, 1 is to cos. B + sin. B x tang. A + B. That is, from
the conditions given,
Sec. AQx cos. B + sec. AOx sin. BQx tang. AO+ BC= sec.A + B

From the elements of trigonometry, cos. B + sin. B x tang.

A+ B
'

B .+
. B sin'.-'\+B cos.A+B...cos.B+sin.Bxsin.A+B

= cos. sm. x cos.A+B= cos.A+B
cos. A + B , B cos. A h fi B +

.
B A+ B= ~= _: t ere ore cos. . sm. x tang.

cos. A + B . cos.A+ B

=
~s. A : multiply both sidesby sec. A, the result will be: sec. A
cos.A + B

B+ ' A. . B . .

A+B cos. Axsec.A
A+Dx cos. ,sec. xsm. xtang. = - = sec. .J.A

. cos.A-t B
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This proposition may be extended to ascertain, generally, the
proportion of the successive secants in an arch of equilibration, by
supposing an angle of an abutment MOto consist of the angles of
several sections, such as A°, BO,Co,DO,EO= MO,if an additional

section re is next in order after EO;so that the whole arch may
consist of sections, the sum of the angles of which = MO + ye,

then it is to be proved that the secant of MO, is to the secant of

W + FO, as 1 to cos. F + sin. fO x tang. MO + Fa, or sec.

MO x cos. MO + sec. MO x sin. Fax tang. MO + F"'= sec.
MO+ FO.

,

By the elements of trigonometry, cos. F + sin. F x tang. M + F.

F +
.

F sin. M + F cos. F X cos. M + F + sin. F X sin. M + F
= cos. ' sm. X -,--= -cos.M + Fcos. M + F

F
,

+
.

F . M + F cos. M + F - F cos. M
or cos. sm. x tang. = - = -- M

'

I.".
cos. M + F cos..+ L'

¥ultiply both sides of the equation by sec. M, the result will be

M F + M . F M F sec. M X cos. M
sec. x cos. sec. x sm. x tang. + = M Fcos. +
= sec. M + F.

Thus the relation of the successive secants of the angles be-
tween the vertical line and the lowest surface of each section in
any arch. of equilibration is demonstrated, in general, and the
measure of the pressures on the abutments proved to be equal to
the weight of the first or highest section x cotang. Aa x sec. of the
angle of that abutment: and, in general, any sec. of an angle of an
abutment is shewn to be to the sec. of the angle of an al;>utmentnext
following, in the proportion as 1 is to cos. of the angle of the
section + sin. of the same angle x tang. of the sum of the angles
from the summit of the arch to the abutment.

The ensuing geometrical proposition is intended to investigate
die weights of the individual sections in an arch of equilibration:



C 9 J
also to infer the sums of the weights of the sections which form the
respective semiarches. A, B, C, D, Fig. 6. is a circular arc drawn
from the centre 0 and with the distance OA. The arc AB = AO,

AC = BO,AD = Co; AG is drawn a tangent to the circle at the

point A ; through the centre 0 and the points B, C, D draw the
lines OBE, OCF, ODG~ then the line AE will be a tangent to
the arc AB, AF will be a tangent to the arc AC, and AG will be
a tangent to the arc AD; through the points B, C, D draw the
lines BH, Cl, DK perpendicular to the line OA; then will BH
be the sin. and OH the cos. of the arc AB = AO,Cl and 01 the

sin. and cos. of the arc AC = BOand DK = the sin. and OK the
cos; of the arc AD

. Co through C draw CM perpendicular to

OE, so shall CM be the sin. of the arc CB.
.

The following proposition is to be proved: the difference of the

tangents of the arcs AC and _t\B, or the line FE, is to the line CM,

or the sine of the difference of the same arcs, so is 1 to the rect-

angle under the cosines of AB and AC, or OH x 01: the demonstra..

tion follows, radius being = 1; the tangent of the arc AB = c::..1:,
and tang . of the arc AC = sin'1~; therefore the difference of the

cos.

tang of AB andAC-~-
sin.AB=sin.ACxcos.AB-sin.ABxcos.AC.

. - cos.AC cos.AB cos.ABx cos.AC
'

but the sin. of AC x cos. AB - sin. AB x cos. AC = sin. AC - AB

= the sin. of the difference of the same arcs = CM; therefore

the difference of the tan gents EF = AB
CM

AC; which equa..cos. x cos.

tion being resolved into an analogy, becomes the following pro-
portion:' as the dHferenceof the tangents ~E is to the sine of the

differenceof the arcs sin. AC - AB, so is radius 1 to the rectangle
under the cosines 01 and OH, which is the proposition to be
proved.

c
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Since it has been shewn in the pages preceding, that the pres-
sure on each abutment is w x cotang. AOxsec. of the angle of that
abutment, the pressures on the several sections will be expressed
as follows:

Pressure on the vertical abutment VO = w x cotang. AO= w
X pi sec. Vc.

Pressures on the lowest surface of each section.

A p = w x cotang.,Ao x sec. Va
B fj = W x cotang. AO x sec. Vb
C r = w x cotang. AO x sec. Vc

D s = w x cotang. AO x sec. Vd
&c. &c.

Let CB be an arc which measures the angle of any section, so
that OF may represent the secant of the angle AOF, and OE

= the secant of ~heangle of the abutment AOE: the difference of

the tanp'ents FE = AB
CM

AC = sin. BO x sec. of the an gle
b cos. X cos.

AOB, x sec. of the angle AOC, or, according to the notation which
has been adopted, the difference of the tangents FE = sin. BOx sec.

of Vax sec. Vb, radius being=::: 1.
The weight of the section B, by page 6, =P x sin. BOx sec. Vb,

but by the table in page aboveinserted,p = w x cotang. AO,x sec.

wherefore the wdght of the section B ~ w x cotal1g. AOx sin. BO
x sec. VaXsec.Vb: on the same principles the weights of the several
sections will be expressed as underneath.

Sections. Weights.
A = w x cotang. AO x sin. AOx sec. VOx sec. Va
B = w x cotang. AO x sin. B~ x sec. Va X sec. Vh
C = W x cotang. AD x sin. Co x sec. yb x sec. Vc
D = w x cotang. AO x sin. DOx sec. yc x sec. Vd
E ~ w x cotang. AO x sin. EOx sec. Vd x sec. Ve
F = w x cotang. AOx sin. FOx sec. VeXsec. Vi,

&c. &c.
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Becausethe lines Fig. 7. AE, EF, FG represent the weights of the

several sections AB, BC, CD, the sum of those lines, or AG, will
denote the sum of the weights of the sections A + B + C. And in
general, if the angle of an abutment in an arch of equilibration
should = .yz,and the angle of the first section = AO,and its

weight = w, the sum of tbe weightsof the sectionswhen adjusted,
will = w x cotang. AO x tang. y~.

On this principle the weights of the sums of the successive sec...
tions, or the weights of the semiarches, will be as they are stated
underneath.

Sums of the weights of the sections, or weights of the semiarches.

A . . . . =wX cotang. AOX tang.Va = w X cotang. AOX tang.A

A + B . . . =wx cotang. AOX tang. Vb = w X cotang. A8 X tang. A+B
A + B+C . =w X cotang.Ao X tang. V<=w X cotang.Ao X tang. A + B +C

A + B+C +D =wX cotang.Ao X tang.yd=w X cotang.Ao X tang. A +B +C+D

&c. &c. &c.

The method of fluxions affords an additional confirmation of this

proposition: suppose an arch adjusted to equilibrium to be composed

of innumerable sections, the angles of which are evanescent; to as-
.

certain the weight of the sum of these evanescent sections included
wIthin a given angle from the summit of the arch to the lowest abut-
ment Vc; since the angles of the sections are evanescent, the quan-
tity Vc= Vd: and for the same reason, the sin. of the angle DOwill

ultimately = D. Wherefore, the evanescent weight of the section

D = r x sin. b x sec. Vc = r x i>x sec. Vc. Let the tangent of the

angle Vc= x to radius 1; then the sec~ of Vc=.v' 1 + x7-; and

because Vc = Vd, it follows that Vc x Vd= 1 + x7-: the weight

therefore ofthe evanescent sectionD=w x cotang. AoxD x l+X2.;

C2
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which is the ffuxion of the weig4t of the arch equal to the ffuxion
of the angle DOsec." Vcx w x cotang. AO.

But the ffuxion of an arc x into the square of its secant is known
to be equal to the fluxion of the tangent of the same arc, when
both. quantities vanish together: therefore the integral or fluent,
that is, the weight of the arch, will be equal to the tangent of the
arc x into constant quantities; that is, the sum of the evanescent
sections, or the weight of the entire arch, from the summit to the
abutment = w x cotang. A x tang. Vc.

On the Model, No. 1, for veryfying the Constructionof an Arch, in
which the Weights of the Sections A, B, C, D, &c. are inferred

from the Angles given in thepresent Case= 5° each.
.

Although the various properties of arches described in the
preceding pages, respecting the weights and dimensions of the
wedges, and their pressures against the abutments, require no fur-
ther demonstration than what has been given in the preceding
pages; yet, as it has been remarked, that philosophical truths, al-
though.demonstrable in theory, have often been found to fail when
applied to practice; in order to remove every doubt of this sort,'. ,
concerning the theory of arches, which is the subject of the
preceding and present Dissertation, a model of an arch was con-
structed according to the conditions in Table 1. in which the angle
of each section = 5°, the weight of the first section = 1, the
weights of all other sections being in proportion to unity. This
arch, like most arches which were erected previously to the 16th
century, consists of two semiarches, similar and equal and resting
Cigainst each other, in the middle of the curve, as described in
figure 2: the summit of the arch is occupied by two equal wedges
A, A, resting against each other when coincident with the
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vertical plane VO; according to the construction of tIlls propo-
sition, the weight of the wedgeA being assumed= 1, the weight
of B appears to be 1.01542, and the weight of the wedge C

= 1.°4724. These weights being applied in the form of
truncated wedges, supported upon immoveable abutments, sus-.
tain each other in exact equilibrium, although retained in their
places by their weights and pressures only, and independently of
any ties and fastenings which are usually applied in the case
when the structure is intended for the purpose of sustaining
superincumbent loads. The pressure between the two first sec-
tions in a direction parallel to the horizon = P'= 11.24300>
the pressure against the lowest surface of the first section =p
= 11.47371: the pressure on the lowest surface of the second
section, or

~ = q= 11.60638: on the lowest surface of C, the
pressure is = r ='11,83327. The intention of this model is not
only to verify the properties of equilibrium of these wedges, acting

on each other, but also to examine and prove the several pressures

on the lowest surface of the sections to be in their due proportions>

according to the theory here demonstrated. And it ought to be re-

membered that, these pressures being perpendicular to the surfaces

impressed, the reaction is precisely equal and contrary; for this
reason, each of the surfaces subject to this pressure will have the

effect of an abutment immoveably fixed.

The most satisfactory proof that the pressure' on any abut-

ment has been rightly assigned is, by removing the abutment and

by applying the said force in a contrary direction; the equili-

brium that is produced between forces acting under these circum-

stances, it is a sufficient proof that the reaction of the abutment

is precisely equal to the force impressed upon it in a contrary

direction.
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After the weights of the several wedges in an arch of equilibra-

tion ha,vebeen determined, in proportion to the w.eight of the first
wedge A assumed to be - 1, some difficulty occurs in formin'g
each wedge of proper dimensions, so that their weights shall be
correspondent to the conditions required. A wedge being a solid
body consisting of length, breadth, and thickness, of which one
dimension, namely, the thickness, or depth, remains always the
same; the weight of any wedge will be measured by the area
or plane surface in each section, which is parallel to the arch;
that is, if the thickness or .depth of any section K (Fig. 7.) be
put = It, the solid contents of the section K will be measured by
the area KttS multiplied into It; put the angle SOT = 5°, the
sin. of 2°go' a" = s, cos. 2°go' 0" = c; also let Ot = x; then we
find, by the principles of trigonometry, that the area Ott = x1.se,

and the area OTS = r1.se, and the area TttS = ~'"se - r"'sc.

Let the area corresponding to the weight of the section proposed

= k, so that X1.- r1.se = k; and x1.= k + r1.se: wherefores.c

/ k + r1.se - -
X = ; and Tt or S t, the slant height of the section Kse

= /k + /1.sc - r. This being determined, the breadth of these

section t t = 2,s x 0t = 2SX, making therefore the radius OV

= 11.46281, witfi the centre 0, and the distance OV = 11.46281,

describe the circular arc VABC; and in this arc from V set off the
several chords VA, AB, BC, &c. = 1 inch, in consequence of which

the angles VOA = AOB = BOC, &c. &c. will be 5° each. The
slant height and the breadth of each section will be computed by
the preceding rules.
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On tbe Model, No. 2,for illustrating and verifying tbe Principles of
tbe Arcb, wben tbe Angle of eacb Section, after tbe first Section
AO, are inferred according to tbe Rule in Page 27 of former

Tract, from tbe Weigbts of tbe otber Sections.

- In the propositions which have preceded, the several angles of
the sections AO, BO,Co, DO, &c. have been considered as given
quantities, from which the weights of the corresponding wedges

have been inferred, both by geometrical construction and by cal-

culation, when they form an arch of equilibration. The next

inquiry is to investigate the magnitudes of the angles from having

given the weights of the several sections; but as the construction
and demonstration would not in the'least differ from that whiCh

has already appeared in page 27 of the former Tract on Arches, it

,may be sufficient in the present instance to refer to the former
Tract, both fot explaining the principles of the construction and

the demonstration, inserting in this place only the result, which

is comprised in the following rule.

Having given AOthe angle of the first section, and the weight

b = 1.25 of the. section B next following, together with the angle
at which the lower surface of A is inclined. to the vertical, called

the angle of the abutment of the section A, or Va, and the pressure

on it = p, to ascertain the magnitude of the angle Bo, in an arch

adjusted to equilibrium: in the proposition referred to it is proved,

h h d",
'd Bo b x cos. V" d

.
bt at on t e con IDons state, tan g . = p

+ b 'Va ra IUS e-
x Sil.

mg == 1.

The model constructed to verify the principles of equilibration,

consists of a circular arc drawn to a radius = 21.7598 inches.
VA, AB, BC, &c. are chords = 1 inch each, and subtend at the
centre of the circle angles of 2° 38' 0": as the angle ,?f the first
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section AO= 2°38' 0", the angle of the abutment, or the angle con-
tained between the vertical and the lowest s~rface of the section

A= ya=2°g8'o": the pressureonthelowestsurface?fAo p= sin~A.

= 21.765553, and according to the rule inserted in page 1~,

°
1.25x cos.2°38'0" 0,,, h h I ftang. B = . 0-

8'" = Q 16 29 . W ereforet eang eo
P+I.25xsm.z 3 0 ~

the abutment contained between the lowest surface of B and the

vertical line = A° + BO = 2° 38' 0" + 3Q16' 29" = 5° 54' 29" = Vb.

By the same rule, the angles of the successive sections Co, DO, E.,

&c. &c; and. the angles of the abutments corresponding, are com..
puted as they are stated in the columns annexed, in page 17.

Let the arch to be constructed be supposed such as requires
for its strength and security, that the weight or mass of matter

contained in the lowest section R, shall be five times the weight of

the first or highest section A, and let. the arch consist of thirty-four

sections, seventeen on each side of the vertical plane: on these con-

ditions, the weight of the successive sections will be as follows;

A= 1, B = 1.25, C = 1.5C?, D= 1.75, E= 2.00, F= 2.25, &c.
as stated in Table IX: by assuming these weights for computing

the several angles BO,Co, DO, &c. according to rule in page 12,
they are found to be as in the ensuing columns, and the succes.

sive sums of the angles are the angles of the corresponding abut-

ments. By considering the drawing of this model, it is found to
contain the conditions necessary for calculating the areas required
for estimating the weights of the voussoirs. For the inclination of

each abutment to the abutment next following, is equal to the

angle of the section which rests on the abatment; thus,. the in-

clination of the lines' Iz, Hi, is equal to the angle of the section

1= HiI; also the inclination of the lines Rh, Gh, forms the angle
of the section H = Hh G, and so on.
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MODEL No. 2.

Dimensions of an Arch t:if Equilibration: the Angle of tb,efirst
Section, or AO= 2° 38' 0", and the Angles of tbe other Sections,
and the Angles of the Abutments, are as follow :

Angles of the Sections.
0 I

"A" = 2 38 0

BO = 3 16 29
Co = 3 5£ 39
DO= 4 24 36
EO= 4 5° 9
F"= 5 7 16
GO= 5 14 41
HO= 5 1£ ]4

1"=5 1 8
KO= 4 43 23
LO= 4 21 27
MO=3 57 33
N°= 3 33 26
0° = 3 10 21

po= ~49 0
QO= 2 29 42
RO= 2 12 31,

Angles of the Abutments.
0 , 11

V. = 2 38 0

Vb = 5 54 29
Vc = 9 47 8
Vd:::::::J14 11 44
Ve= 19 1 53
VI= 24 9 9
Vg=29 23 5°
Vb= 34 36 4
Vi = 39 37 12
Vk= 44 20 35
VI= 48 42 2
V'"= 52 39 35
Vn= 56 13 1
v. = 59 23 22
VP= 62 12 2~ .

V'l = 64 42 4

V" = 66 54 35

Geometrical Constructionfor drawing tbe Abutments, in tbe Model
for illustrating Equilibrium of Arcbes, when the Magnitudes
qf the Angles are iriferred from tbe Weights of the several
&ctions.

VABC, &c. represents the portion of a circular arc, which is drawn
rr'om the centre 0, with the distance QV: VIO (Fig. 8.) is a line

D
.
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drawn perpendicular to the hodzon, d,ividing the entire arch into

two parts, similar and equal to each other: the radius OV=21.7598

inches: from the point V, set off the' chord VA = 1 inch, and' the

chords AB, BC, CD = 1 inch each; the angle of the first section

will therefore be = 2° 38' 0''': for as one half: 1 :: the sin. of t Ao~

or sin. 1019', to radius, which is, consequently, = 21.7598 inches:

the semiarch V R consists of seventeen sections, the weights of

which increase from'1 to 5, which is the weight of the lowest or'

last section; and from these conditions it is inferred, by the rule

in page 15, that At:)= 2° s8' 0", BO= 3°16' 2[/', Co= 3~5'),' 39",.
&c. the ,successive sums of these angles, or the angles of the
abutments, AO= 2° g8' 0" = Va, AO+ BO = 5° 54' 29" = ViJ,.
A + B + C = 9° 47' 8" = Vc, &c. as stated in Table IX.

The direction of the line must next be ascertained, determining
the position of the abutment on which either of the sections, for
instance the section I, is sustained: from the point 0 draw the
line 01: it is first to be observ~d, th~t the angle contained be-
tween the line I and VO, or the angle V I I = 39° 37' 121/~

according to the Table IX. and the angle VOI = 2° 38' 0" x.by

9 =,23° 42' 0": make therefore the following proportion: as
the sine of 39° 37' 12", is to the sine of VII - V01 = 15° 55' 12",

so is radius OV, or 21.7598 inches to 01 =9.3597 inches; this.
being determined, if a line iIt is drawn through the point I, the line

so drawn wil1 coincide with the abutment on which the lowest sur-

face,of the section I is sustained'; and by the same principle the
directions of an the abutments are practically determined', Also,

it appears that the successive abutments I i, I-Ii.~ include be-

tween them the angle HiI, which is therefore equal to the angle-

of the section I; therefore'to find the solid contents measured by

the area of the sectiQn I, the triangle iss, being made isosceles
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. s . .
the area is s will be = 1$X $ln. Sl$ ;* from which if the area Ii H be

7.

subtracted, the remaining sum will be equal the area of the section

I: put either of the lines is = x, then by the proposition which
~1. . ...

h b b
.

ed h
. lS X Sin. SIS

d b has een a ovementJon , t e area zss = 7.
'

an y t e
. .

h i H x i I x sin. H nosame proposItIOn, t e area Hi I = .; conse-
2

tl ha 1
z'1 X sin.1° . .quen y, is being put = x, we s 111ave-z- - Hz x I z

sin.1° . s t zI+blxbHxsin.lo dx - = I,It appe ars that x = .
1°

, an canse-
2 sin.

] /2 1+ b I X b H X sin. I" b h 1
.

h . hquent y X = V .
sin. IQ : y t e same ru et e welg ts

and dimensions of all the sections K, L, M, &c. are determined.

By the principles stated in the preceding pages, the weight of

either of the highest sections in any course of voussoirs, together
with the angle of the said section, regulates the magnitude of the

horizontal thrust. or shoot, and the perpendicD;lar pressure on the

ultimate or lowest abutment and the direct pressure against the

lowest surface of any abutment will depend on the cotang. of

the angle of the highest section and the sec. of the angle of the

3butment jointly.

PROPOSITION..The area ~antained in a right-lined triangle ABC, Fig. 1°. is equal ta the rectangle

under any two sides X t the sine 'Of.the included angle.

Let the triangle be ARC; AB and AC the given sides, including the angle BAC,

between them.

Through either 'Of the angles B draw BD perpendicular ta the appasite base AC: by

the elementary principles 'Of~eometry it appears. that the area 'Ofthe triangle ABC = tha

rectangle under the base At, and half the perpendicular height BD, or
AC X BD.

But
-

.. la

when BA is made radius, BD is the sine of the angle BAC: consequently, the line

BD
BA X .in. AQ

d he ABC AC A'[) ain. .CAB AC X AB sin. AO h
. h= ; an t area

= X.tU>X -:: 'W lC
SI . . .

is the praposition to be praved.

t I, here, means the weight of the section 1.

D2
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In consequence of these properties, since each course of vous-
soirs stands alone, independent of all the voussoirs above and
beneath, the strength of an arch will be much augmented by the
degree of support afforded to the voussoirs situated in the course
immediately above, as wen as to those underneath, which may be
connected with the former.

Moreover, the inconvenience is avoided which obviously belongs
to the principles, that are sometimes adopted for explaining the
nature of an arch, by which the whole pressure on the abutment
is united in a horizontal line, contiguous to the impost; whereas
the magnitude of the horizontal shoot, and the perpendicular
pressure on the ultimate or lowest abutment has appeared by
the preceding proposItions to be proportioned to the weight of
the highest section in the semiarch, and to the sec. of the angle
of the abutment jointly; and consequently, the pressure on the
different points of the abutment may be regulated according to
any proportion that is required.

Whatever, therefore,. be the form intended to be given to the
structure supporting the road-way, and the weight superincumbent
on an arch, no part of the edifice need to be encumbered by su-
perfluous weight; on the 'contrary, such a structure, consisting of
the main arch and the building erected on it, is consolidated by
the prindple of equilibrium, into one mass, in which every ounce
of matter contributes to support itself, and the whole building.

The equilibration of arches being established by theory, and
confirmed by experiment, it becomes a further object of experi-
ment to ascertain, amongst the varieties of which the construction~
of arches is capable, what mode of construction will be most ad-
vantageous, in respect to firmness and stability, when applied t<J
any given case in practice. A simultaneous effort of pressure.
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combined with weight, by which the wedges are pressed from

the external towards the internal parts of an arch, being the true

principle of equilIbration, the wedges by their form endeavour to

occupy a smaller space in proportion as they approach more nearly

to the internal parts of the curve. It 'has appeared by the obser-

vations in page 29, Part I. that the bases of the sections may be of

any lengths, in an arch of equilibration, provided their weights and

angles of the wedges be in the proportions which the construction

demands, observing only that if the lengths of the bases should

be greatly increased, in respect to the depths, although, in geome-

trical strictness, the properties of the wedge would equally subsist,

yet when applied to wedges formed of material substance, they

would lose the powers and properties of that figure; this shews

. the necessity of preserving some proportion between the lengths
of the bases and depths of the wedges, to be determined by prac-

tical experience rather than by geometrical deduction.

With this view, a further reference to experiment would be of
use, to ascertain the heights of the sections or voussoii.s, when the

lengths of the bases are given, also when the angles BO,CO,DO,&c.

are inferred from the weights of the sections considered as given
quantities, to ascertain the alterations in the angles W, Co, DO, &c.

from the summit of the arch~ which would be the consequence

of varying the angle of the first 5ection AO, so as to preserve the

equilibrium of the arch unaltered: by referring to Table VI. we

observe, that when the weights of the sections are equal to each
other, or A ='B = C = D, &c. and the angle of the first section

= 5°; then to form an arch of equilibration, the angle of the
second section, or BOmust = 4° 55' 3°'" the angle of the. third

section Co == 4° 46' SS", &c. .
And it becomes an object of expe-

rimental examination how far the sta.bilityand firmness of an arch



[ 2!! J
will be affected by any alterations of this kind, and to judge

whether in disposing a given weight or mass of matter (iron for

instance) in the form of an arch, any advantage would be the
consequence of constructing the sections so that the first section

will subtend an angle of 1°, 2°, ft, 5°, or any other angle at the

centre of the arch, all other circumstances being taken into ac-

count. When the angle of the first section = 5°,and the weights

of the successive sections = 1, the angles of the abutments will

be severally Va = 5° 0' 0", Vb= 9° 55' So", Vc= 14°42' 2S", and
so on, as stated iq Table VI. By referring likewise to Table VIII.
we find the angle of the first.section assumed = 1°, and the weight
of each of the subsequent sections being = 1, the angles of BO, Co,

&c. are severally Bd'= I" 4' 57", Co = 1°9' 51", D' = 1° 14' S9";
consequently, the angles of the abutments wiII be as follows:
Va = 1°, Vb = 2° 4' 57", Vc= SO 14' 48", Vd= 4° 29' 28", &c.
which give the dimensions of the sections when they. form an arch

of equilibration.

It has been frequently observed, by writers on the subject of
arches, that a thin and flexible chain, when it hangs freely and

at res4 disposes itself in a form which coincides, when inverted,

with the form of the strongest arch. But this proposition is with-

out proof, and seems to rest on some fancied analogies arising

from the proper6es of the catenary. curve, rather than on the laws
. of geometry and statics, which are the bases of the deductions in

the two Dissertations on Arches, contained in the preceding pages;

if it should be proved that an arch built in the form of a catenary

or other specific curve, acquires, in consequence of this form, a

superior degree of strength and stability, such proof would super-

cede the application of the properties demonstrated in these Dis-

sertations.
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Concerning tbe relative Positions of tbe Centres of tbe Abutments.

and the Centre of tbe Circle.

When the angle of an abutment is greater than the correspond-

ing angle at the centre of the circle; in this case~ the centre of the

abutment falls above the centre of the circle, as in Fig. 9. When

the angle of the abutm.ent is less than the angle at the centre of

the circle~ the centre of the abutment falls beneath- the centre of

the circle, as represented in Fig. 9. When the angle of the abut-

nlent is equal to the angle at the centre, this case will coincide

with that which is stated in pages 4 and 5 preceding, in which
Va = AO,Vb= 2 AO,Vc = gAO, &C. Vb= AD, VI = 2 AD, Vb =.AD,

&C. &c. and consequently the centre of the abutment coincides.

with the centre of the circle. t

rurtber Observations on tbe Courses of lToussoirs.

A, B, C, D, E, &c. terminating the letter F, denote the sections

which form the first course of voussoirs in a semiarch of equili-

bration, of which ADis the first, or one of the highest, sections;
jf the weight of the section A be = T.V,and the angle of the abut-

ment VOF = Vc. then it has appeared, by the preceding pages,

that the pressure against the lowest or ultimate abutment = w
x cot,!-ng. A x sec. Vc. 2dly. Let BDbe the angle of the first
section in the next course of voussoirs, terminated on each end

by the letter L, and let y be the weight of the first section,. the

.The point in which 1\nyabutment intersects the vertical line is called, in these pages,

the centre of that abutment.

t Let VD be a line drawn through V, the middle point of the arch passing through t~e

c.entre ~f the circle 0; on this arc the angles of the sections and th(: angles of the abut-

ments are measured: p, the point where any abutment, for instance I, continued intersects.

the vertical i/O, is. called the centre of the abutment.
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pressure on the last Of ultimate abutment = x x cotang. B x sec.
Vc. Moreover, let z be the weight of the first section C, in the

third course of voussoirs, which is terminated by the letter P. It
follows that the proportions of pressure on the ultimate abutment
denoted by the letters F, L, P, will be w x cotang. AOx sec. Vc+ r
x cotang. BD x sec. Vc, and y x cotang. Cox ~ec.Vcrespectively~

and according to these quantities, the respective pressures on the
several parts of the abutment, will be regulated according to any
law that may be required. *

The principles of arches having been established- according to
the preceding theory, and confirmed by experiment, described in
the experiments No. 1 and 2; in the first of these, the angles of
each section are constructed = 5°, and the weight of the section A
having been assumed = 1, the weights of the sections BO,Co, Do,

&c. are inferred as stated in Table 1. from the angles BO,Co, Do,
&c.considered as given quantities. In No. 2, the angle of the
first section is assumed = 2° g8' 0". The remaining angles are
inferred from the givenweights by the rule in page 15, A= 1.00,

B = 1.25, C = 1.5°, &c. to Z = 5, which is the weight of the
lowest or ultimate section. It has appeared in page 29, in the for-

. .

mer Tract, that whatever be the figure of the interior curve oorres-
ponding in an arch of equilibration, the bases of the sections which
are disposed in this form may be of any lengths, provided the
w~ights and the angles of the sections are in the proportions which
the construction demands.

CORRJi;CTION OF THE ENGRAVING FIG. 6.
. That the engraving of the ~Figur~ 5 may correspond with the text, the summit

of the first course of voussoirs ought to be marked A, the first section of the second course

should be marked B, and of the third the first section
= C, and so on; this will make the

text correspondent with the Figure 6.
.
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A further reference to experiment would be of use in practical
cases, to ascertain how far the strength and stability of an arch
would be affected by altering the proportion between the lengths
of the voussoirs and the heights thereof; for instance, when the
lengths of the wedges are given to ascertain the alterations in
the stability of the arch when the depths or heights of the
sections are three, four, or five times the length. Let the fol-

towing case be also proposed; the entire weight of an arch
being supposed known, what part of this entire weight must
the first section consist of, so as to impart the greatest degree
of strength to the structure; also to decide whether the angle
of the first section ought to be made 1°, 5°, 10°, &c. or of what
ever magnitude would contribute to the same end. To these
may be added the following cases to be discussed; when the
angles of the several sections are inferred from the. weights
thereof, to investigate what must be the proportion of the said
weights, so as to make the arch uniformly strong throughout.

FURTHER CONSIDERATIONS CONCERNING THE CON.
STRUCTION OF THE MODELS No. 1 AND No. 2.

Dimensions of a Model No. 1, of an Arch of Equilibration. Radius

= QV = 11-46281, the Angle of each Section = 5°, the Chord

of each Arch = l = 1 Inch. (Fig. 1. )

The first section is a brass soHd, the base of which = KV = 1

inch, and the sides Vv, Kk, or the slant height of the section A

= '961~ and the depth or thickness of each section = It inch,
the breadth of A or vk = 1.084-

The weights of the sections, as they are calculated according
to Table No. I, the first section being assumed as unity.

E
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Rule for making the brass voussoirs equal to the weights which are
expressed in Table No. I. Let the sine = 2° 3°' 0" = s, the cosine c
when radius = 1; then making the radius = r, the area of the triangle

->vOk = r"-x se, and the area VOK = VO se; from whence Vv, or the
slant height .of the section A, when the weight = 1, is found to be

/ -- .
I ..J T'J. se

'se
~ av = .961, the breadth vk = 2S x Ov = 1.084 = Vk. Thus,

by the same rule, the slant height of the section B = ~/B +s~'J.
se - r = .9749,

and the breadth II ~ 1.084, in all the sections entered in Table I. are
calculated.

MODEL, No. 1.

I

Weights of the sec- Weights of the sections 'Weights of the

I

~ tions as they are cal- when made of brass, sections when Sums of the
E. culated in Table Slant height of the Breadth of the specifically heavier made of brass,

I

weights in Jb..g No. 1. in the Tract sections. sections. than water, in propor- in lbs. avoir- avoirdupoi..
~ on Archs. tion 8 to 1 : in ounCes dupois.

avoirdupois.- -
0.434031 0.434°3
0.44°7~ 0.87475
0.45453 1.32928
0.47535 1.80564
0.5°769 2.31333

0.55°87 2.86421
0.6°949 3.4737°
0.6!:i903 4.1627~1t
0.79822 4.96°96
0.95128 5.91224
1.17419 7.0t$°43
1.50619 8.59263
2.°461810.63882
2.9913° 13.63°12
4.8844818.51455
96204528.J3500

28.5700056.7°500

A - 1.00000 Kk = '961jVk = 1.084

j

A = 6.9444
B ,- 1.01542 Lt - .974\1l = 1.085 B = 7.0515
Ci= 1.°472}Mm= 1.004,mm= 1.087C = 7.2725
D - 1.09752~Nn- 1.°5o'nn = 1.°92 D = 7.6215
E - 1.1697200 - 1.116;00= 1.097E = 8.123°
F - 1.£6922Pp - 1'.207'PP= 1.10,5F - 8.814°
G - 1.40~27Qq = 1.329'QQ = 1.116G = 9.7518
H - L58754Rr - 1.4921rr= 1.130H = 11.024

I - 1.8391055 - 1:7131sS = 1.149 I = 12.771
K - 2.19175Tt - 2.016'tt = 1.176 K ~ 15.220
L - 2.70196Vv - 2'4441vv= 1.21SL = 18.764
M\= 3'47S66Uu - 3.0671uu= 1.264M = 24.122
N = 4.714cj.OWW=4.098ww= 1.357N =32.738
0 = 6.89199Xx = 5553XX = 1.4840 = 47.860
P = 11.25371Yy = 8'2.79

~

Y =1.722 P = 78.150
Q = 22.16552ZZ = lS.83~ZZ = 2.207Q =J53:92
R =65.8171 Aa =29.°56 a =3.5S4R = 4.56.96
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On the Construction of the Model No. 2, in an Arch of Equilibration,

in which the Angles of the several Sections are inferred from the

Weights thereof, according to the Rule in Page 15.

In this model the arc A, B, C, &c. is a portion of an arc of a
circle: the first section A subtends an angle at the centre of the
circle AD= 2,0 38' 0", the chord of which = 1 inch = to the chord
of BC, CD, DE, &c. radius = QV = 21.7598 inches: the weight of
the first section being assumed = 1, the weights of the sections B,
C, D, &c. are considered as proportional to the '\-veight of the first

section when it is = 1; if the weight of tpe seventeenth section or
R = 5, the weights of the intermediate sections will be B == 1.25,
C = 1.5°, D = 1.75, &c. as stated in Table IX: and since A.
the angle of the first section = 2838' 0", by applying the rule
demonstrated in page 27 in. former Dissertation, and referred
to in page 15 of this Tract, the angles of the several sections
are found to be AG= 2038' 0", BO= SO16' 9.9", Co=

Sf)52.'219",
and the corresponding angles of the abutments, or successive
sums of the angles of the sections, are 2° 38' Olf + 3016' 2911

== 5° 54' 29" = Vb. Moreover, 'At:!+ BD + Co = 9° 4:-' 8" = V~,

and thenceforward according to the same law of progression. The
next object of inquiry is, to ascertain from what point I in the line
OV the line OIl mllst be drawn, so as to coincide with the lowest
surface of the section I; when inclined to the vertical at the given
angle VII. The angle subtended by the semiarch VI at the centre
0 is measured by the angle 101, and the difference ofthese angles,
or VII - IDr = no. The radius 10 being denotedby the same
lett~rs which distinguish the line 10, the different meaning will be
determined by the context. From the principles of trigonometry,
the following proportion is inferred; as 10 : or :: the sin. of no

E2
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to the sin. of OIl or VII; consequently, the line la = av
~~~n. OH.

As an example, let it be required to ascertain the inclination of the

abutment to the vertical, on which the section I is sustainecl when

it forms a portion of an arch of equilibration, and the angle of the

abuhnent VII = 39° 37' 12": the angle VIa subtended by the
semiarch VI at the centre of the circle = 23° 42' 0/1, which being

subtracted from the angle of the abutment 39° s7' 12", leaves the
angleJOI == 15°55' 12, and the distance required from the centre,

or = av x s~n.O
VI

I
I
I, or because OV== 21.7598 inches, 01 == 9.35978sm.

inches; making, therefore, the line 01 == 9.35978 inches, through
the points II draw the line I, I, t, which will be the position of

the abutment on which ~he section I rests, the angle of which,
Vi == VII, is. the inclination of the abutment Vi to the vertical: for
the same reason VHH == the ~ngle of the abutment Vb==VHH,
the difference of these two angles VII - VHH = GbH, or the
angle of the section HO:making, therefore, the line Gh ==a, Rb ==b,
the properties of trigonometry give the area of the triangle GhH

= ab x sin~H; on the same principle, the area of the triangle

HiI = HiI == Hi x li x sin~HO; and thus the areas of all the triangles

will be measured, from having given the sides of the triangles and
the angles included between them. The sides of the triangles may
be measured by a scale of equal parts, as stated in Table I. and in
this manner the sides o~all the triangles were correctly measured
by Mr. Berge, so as not to err from the truth .by more than an
unit in the fourth decimal place. This measurement was essen-
tial for computing the distance of the vertex from the base, so as
to form the dimensions of the brass wedges, correctly and inde-
pendently of their weights, in each triangle. For instance, rQ
being put =a and rR = b, this will give the area of the triangle
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rQR == ab x sifl~Ro; and if the triangle raa is made isosceles, or

h f h
. I Ra 3:" X sin. R. thra = x, t e' area 0 t e tnang e . a = :z. - e area

b x a X sin. RO .
f h d ' ffi f h

. hsin.R~; or 1 t e I erence 0 t e areas IS put = iV, t e re-

sult W' ll be 3:'>.x sin. RO
th b x a X sin. :R-

I - e area = w, or x = ra. ::. z

c::/,2W+ thear~aa
~ob

x sin,Ro;
wherefore Qa =/zw + a,x bR~sin.Rosm.

' sm.

= 28.5777 - rQ and Ra =/21» + as~.bR~
sin.RO rR.

Thus, by actual measurement, a = 23.9948 inches, and b =
24-3°.;6, and the area ab x ¥ = 10.7367° =/2'W+ <Is~.b~sin.RO

- Qr, and Ra =/zw + a ~ ~x sin.Ro- rR: the area raa
5111. 0

3:'" X sin. RO h= z- = 15.7367°, or the area raa = 15.7367°; t e

result is, that the area aaRQ = :aa - rQR:= 5 square inches:

and since every square inch of area is occupied by a weight of a
section =.6'9444 oz. avoirdupois, we arrive at the following con-
clusion, that the weight of the section R = 5 x 6,9444 := 34.722£

oz. avoirdupois. Because/zw + as:bR:
S\l1~

-ra :=~8.5777°'

this determines both the greater and lesser sides of the section R;

namely, the greater side being:= ra - rQ := 4.6529; and the
lesser side being = ra - rR = 4.27~n inches; in this way, the

Table is formed, shewing the greater and lesser sides of the several

sections.
According to this mode, the dimensions of all the brass wedges

were formed; the investigation of the angles of the wedges from

the weight thereof is the subjec~ of investigation in page 27 of the

First Part of the Tract, entitled a Dissertation on the Construction

and Properties of Arches; and it appears that if the angle of the

first section is given = AO,together with the weig.ht thereof:= at
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assumed to be = 1, the weights of the other secticn B = b= 1.25,

the weight of C = c = 1.5°, of D = d = 1.75, &c. The prin-
ciple of equilibriumis established,by making the tang. of the

I Bo a x cos. A° I h t f h I c o b X cos. BOan g e = - - AO'a so t e an g.0 t e ang e = -
b ---:--BQ'p + a X Sill. . q + X SlO.

as they are stated in Table IX. which contains the condition~,
founded on supposing that the strength and security of the arch
are such as require that whatever weight should be contained in
the first section, the weight of the seventeenth section R shall be
five times as great: making, therefore, the weight of A = 1. the

weight of B = 1.25, and C = 1.5°, and the weight of the seven-
teenth section or R = 5, &c. Thus the angle of the first sec-
tion AO being assumed = 2,° 38' 0", and the initial pressure on
the lowest surface of A = P = 21. 76555, and the weight of
the first section = a = 1: from these data the following results

bt ' d . a X cos'.Vo - 0 8'" Bo b X cos. Vaare 0 ame .
Pt

. +
. . Vo - 2 3 ° tang. = b .

Va X Sill. P + X sm. "
0 6' " t c o c X cos. Vb o. ,

" & & d= 3 1 29 ang. = q + c Xsin.Vb= 3 52 39, c. c. accor -
ing to the statement in Table IX.

The Dimensions of the Sections, according to the Rule in Page 29.
. .

Lesser Sides.

A = 0.97827
B = 1.20676

C =1.41568

D = 1.61833
E = 1.81718
F = 2.00676
G ~ 2.20080

H= 2.4285°
I = 2.62584

Greater Sides.

0.97827
1.21126

1.44928

1.66693
1.90'118

2.13656

'2.36920
2.63910

2.88134

Lesser Sides.

K = 2.73754

L.= 3.14849
M -

3.36800
N = 3.64620
0 = 3.87463

P = 4.16762

Q = 4.43768
R = 427210

Greater Sides.

3.12824

3-47°69
3.717°0
4.01460

4.25476,

4.55142

4.82°38
4.65290



MODEL, No. n.

Table1. II L.
l.ine5 mea5ured by Mr. Bcrge, 011 a bras5 plate, being 11. Areas of the greater

the dj,tanees as undermentioned. Sections Breadth of the sections. triangles.

QV = 21.7598 OA = 21.7598 A
'bA = 17.4925 bB = 17.4970 B
cB = 14.8136 cC = 1.4.8372 C
dC = 13.0°92 ciD = 13.°578 D
eD = 11.7886 eE = 11.8726 E

jE = 11.0657 fF = 11.]955 F
gF = 10.7424 gG = 10.g108 G
hG = 10.5917 hH = 10.8023 H
iH = 10.9460 iI == 11.2015 I
kI == 11.6478 kK == 11.9385 K
lK =;::12.0988 IL = 12.4210 L
mL = 13.3775mM = 13.7265 M
nM = 14.727° nN = 15.°954 N
QN = 16.6668 00 = 17'°472 0
pO = 18.6297pP = 19.0135 P
qP = 21.0620 qQ '= 21.4447 Q
rQ == ~S'9248 rR = ~4'S056 R

IV.
Areas of the 1c.5er triang]e..

vk = 1.0449 Ovk = 11 .8770 OVA = 10 877°
II = 1.0689 bll = 9.9918,bAB = 8.7418
mm = 1.1010 cmm = 8.9315 cBC = 7.4315
17n = 1.°.997 dnn = 8.280g dCD = 6.53°9
00 == 1.1550 eoo = 7.8994 eDE == 5.8994
pp = 1.1796 fpp = 7.7791 fEF = 5.5291 n
qq == 1.2°°7 gqq = 7.8569 gFG = 5.3569 \n
rr .' 1.2012 hrr == 7.gS87 hGH = 5.1887 r:.ss = 1.2118 iss = 8.3632 iHI = 5.8632
tt = 1.1898ktt == 8.9881 kIK = 5.7381
VV == 1.1838 lvv = g.20g0 lKL = 5.7°9°
uu = 1.1814 muu = 10.0883 mLM = 6,3383
ww == 1.1961 nww = 10.8966 nMN = 6.8966
xx = 1.1584,o.rx = 12.1119 oNO = 7.8619
YY = 1.1135 PYY = 13.SW31 pOP == 8.7°8t
zz = 1.1269 qzz = 14.5810 qPQ = 9.8310
aa ==1,1014.raa = 15.7367rQR = 10.7867
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V. Vi. VU. VlII. IX.b,ifference.

Giltenweights\letween the Pxcssures on the lowest Allgles of the sections. Angles of the abutments..greater and Sect!ins. ofthc '~ctions. Distances of the vertex fro",
lesser trio suxface of eac,h sCCjcion. the base of each trianglo
engles. Ovk.

--- . .. ...

'
AO

I) , Jt 0

i8
J/

1.0000 A =:;:::a :::;:;::1.00 P. =: 21.76555 =2 38 0 Va= 2 ° Ok = 22.73807
t.2500 B =b :::;:;::1.2.5: q ;::;:;;:: 21.8586; W =3 16 29 Vb = 5 54 29 bl = 18.70.376
1.5°00 C =c ~1.5°r ;::;::22.06.356 Co =3 52 39 Vc = 9 47 8 cm = 16.25288
t .75°0 D =;:d ;:;::1.75 S ;::;:::22.42739 DO= 4 24 .36 Vd= 14 1] 44 dn = 14.67613
',0000 E ;;.;:;:e =Z.OQ t ~22.99972EO= 4 5° 9 Ve = 19 1 53 eo = 13.68978

~.2509 f ::;. j =2.2.5 'v ;;:;::23.8285$ FO =5 7 16 VI = 24 9 9 fp. = 13.20226
~,.5009G::;::;;:g ;:::T::.2.50 U = 24.9559° GO= 5 14 41 Vg = 29 23 5° gq = 13.11160
~.750QH=h =2.75 W = 26'41465 HO= 5 12 14 Vb = 34 36 4 hl' = 13.23080

3.0000 I ::;::: i :::;: 3 .0.0. X = 28.2264.5 10 = 5 1 8 Vi =.39 37 12 IS = 13.82734
$.25°0 K::;:::k =3.25 Y :::;::3°.4.0220 KO = 4 43 23 V. = 44 20 35 kt :::;::14.776°4
3.5000 L_= I = .3.50 z = 32.94~76 LO = 4 21 27 VI = 48 42 2 lv :::;:: ]5.56949
2.7500 M r:;=.m =;::3.75 a = 35.84656 MO=3 57 33 V11l=52 39 35 mu = ]7.°945°
4.0000 N=n = 4.00 b = 39.102°9 Ne =3 33 26 V"

.

56 13 1 nw = 18.74160
4.25°0 0:::;::0:::;::4.25 c = 4.2.69992

00 =3 10 21 v. = 59 23 22 OX = 2°'9~ 166
4.5°00 P =p =4.5° d =46.62917 .po =2 49 0 VP == 62 12 22 py == 23.18112
4.7500 Q = q = 4.75 e = 50.87939 Qe = 2 29 42 V'l =64 42 4 qz = 25.88238
5.0000 R = r = 5.00 f = 55.441°4 RO = 2 l~ 31 Vr = 66 54 35 ra = 28,5777°

MODEL, No. n.

n
~~
L.J
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From the preceding observations, the following practical rules

may be inferred for deducing, .in general, the weights of the
sections, the pressures on the lowest surfaces thereof, and the
weights of the semiarches, from the conditions on which they
depend: .to give a few. examples of each rule, are applied to tbe
Tables subjoined to this Treatise: it appears from page 10, that
the weight of any section is equal the product formed by multi-
plying the weight of the first section, (assumed = w) into the
cotang. of th~ first section, x into the sine of the angle of the
given section x secant of the angle of the abutment of the pre-
.;eding section, x secant of the angle of .the abutment of the sec..
t~ongiven: in this manner the weight of the section R in Table
No. I. may he found: for w being = 1, and the angle of the first
section= So,thecotang. of 5°= 11.43°o~, and the angle of the
section R= 5°, sin. 5°= .0871557: the angle of the abutment of
the section preceding = VI = 80°, and the angle of the abutment

of the section given Vr= 8S8: the result is, that the weight of the
section R = 11.43°°52 x .0871557 x 5.75877°5 x 11.473718

== 65~817t. By page 10 it also appears, that the pressure upon
the lowest surface of any section R is equal to the product which
arises from multiplying the weight of the first section x cotang.
of the angle of the first section x by the secant of the- angle of
the abutment of the givell section, which makes the pressure on
the lowest s.urface of the section R = 11.43005~ x 11.473713

= 131.145°, agreeing with the number entered.opposite to !he
section in the column entitled enure pressures.

Lastly, the sum of the weight of the sections is found to be
cotang. AO= 11.430052 x tang. 85° = '30.6401, when the weight
of the first section is =1, agreeing with th~ number entered in
Table No. 1. opposite Sr. By similar rules applied.to. the several

F
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Tables IT, Ill, IV:JV, &c. the results wiIl be found to cOITespond
with those entered in the respective Tables.

In the Table No. IV. the angles of the sections are taken indiscri.;
minately and at hazard; but the rules which have been exemplified
above, in the former cases, will be no less applicable to the com-
putation of the numbers in all the ,Tables. In the Table No. IV.
the angle of the section 0 = 12°, the weight ~f the section 0

= 281.4682; to cornpare this with the rule; the weight ought to
be = w x cotang. 5x sin. 120x sec. 76 x sec. 88°= 281.4682, as
above stated: also by the rule in page 10, the pressure on the
lowest surface of 0 = w x cotang~ SO x sec. 88°= 327.5108, cor-

responding with the pressure, as stated in Table IV. Also in this
Table the angle of the section P = 1°, and the angle of tl1eabut-
ment VP= 89°, the angle of the abutment of the section 0 or
VO= 88°, the other notation remaining as before, the weight of the

section P = 327.51°7, and the pressure on the lowest surface of

P = 654.9206, the weight of the semiarch = w x cotang.l x
tang. 89 =654.8220, as entered in Table IV. The computations.
founded on these rules produce result~ in no case less correct
than in the former instances.

".

In No.:VI1L the angle of the first section = 1~, and the angle

of the section RO= 1°54'18",421; the angleoLthe abutmentof
the same section (R) = 2()O18' 54".747: from these data, the rule
a.bovementioned gives the weight of the section R = w x cotang.
18x sin. 1°54'18/1.421 x sec. 24°24' S6i'.316"x se~.26° 18' 54".747

= 2.33333, which-is the correct weight of the section R, as en-
tered in Table VIII. To find the weight of the section R in
Table IX. according to this rule, the -weight of the sectionR

= cotang. 2° 38' O" x sin. 2° 12' 31" x sec. 64° 42' i" x s~c.
66°54/8511 =.5.00000, as entered in Table IX.
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It is nredless to multiply examples to the computation of these
Tables, the numbers in all cases being equally correct with those
in the preceding instances, by which the rules for computing the
Tables have been abundantly verified.

Experiment for determining the horizontal Pressure in Model No. 1.

In considering the circular arch as completed, it is difficult, at

first view, to ascertain the magnitude of pressure sustained by
any of the surfaces on which the sections are supported. Both the

theorists and practical architects have differed considerably con-

cerning this point. From the preceding demonstrations, and the

ensuing experiment, it appears, that the magnitude of pressure sus-
.tained by the vertical plane is to the weight of the first section as

the cotang. of 5° is to radius; and the weight of the first section, or
w, having been found = .43403 parts of an avoirdupois lb. and the

cotang. of l being = 11.43°°52 ; the result is, that the horizontal
force or pressure = .434°3 x 11.43°°52 = 4.961Ibs. avoirdupois,

differing very little from 5lbs. which, in this experiment, counter-
balances the horizontal pressure.

A second Experiment on the Model No. 1.

If the brass collar is placed round the section C, so that the
line cd may pass over the fixed pulley in the direction cd, the equi-
librium weight in this case being = w x cotang. 5° sec. 15°, or

.434°3 x 11.43°°52 = 5.1360 lbs. avoirdupois, being suspended
at the extremity of the line, keeps the whole ill equilibrio.

Horizontal Force, by Experiment on Model No. 2.

In this experiment all the sections on one side of the vertical

line or plane being taken away, and a force = 111bs. weight is
suspended at the extremity of the line cd passing over the pulley

F9
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x, in a direction parallel to the horizon; after the Model and centre
arch have been adjusted, as in the last experiment, when the
centre arch is taken away, the remaining sections will be sustained
in equilibrio.

-
A second Experiment on the Model No: 2.

The brass collar being placed round the section C, and a weight
of 12! Ibs. is applied to act on the lowest surface of the section C,
when the brass central arch is removed, all the sections in the re-
maining half of the arch wiI be sustained, without further depend-
ance on the brass central arch.

On the Experiments for illustrating the Propositions concerning the

Pressures on the lowest Surface of each Section, and against the

vertical Surface, in an Arch of Equilibration.

In the Model No. 1, the angle of the first section AO= 5°, and
it appears from the preceding propositions, that in this case, the
horizontal force or shoot, as it is called, = w x cotang. 5°, in
which expression w is equal the weight of It cubic inches of brass,
the specificgravity of brass is to that of water in the proportion of
about 8 to 1, and the weight of a cubic inch of water is very nearly

'== .5787° ounces avoirdupois; * it will follow, that the weight of a
cubic inch and half of brass will be .57870 x It x 8 = 6,9444
ounces, or 0.434°9 parts- of a pou~d avoirdupois.-If all- the
sections on one side of the arch are removed, and a force in a
horizontal direction is applied, that is in a direction perpendicular
to the vertical surface of the first section, the whole will be kept

. Bya decisiveexperiment of Mr. Cotes it appeared, that the weight of a cubic foot

of pure rain water was exactly 1000 ounces avoirdllpois; therefore, since the magnitude

of a cubic'foot:::: 1728 cubic inches, the weight of a cubic inch of rain water=~8°
-

- 17a
-;:; .51870 ounces avoirdup()is.-Cotes's Hydrostatics, p. 4-3>
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in equilibrio by a force of 5 pounds avoirdupois, C'Onsistingof the
equilibrium weight, which is 4.961 added to a friction weight,
amounting to 0.°39, being a weight exactly sufficient to counter-
act the effects of friction, cohesion, and tenacity.

Experiment for determining'tbe borizontal Force or Pressure in tbe
Model No. 2, in whicb tbe Weigbt of tbefirst Section = .434°3
Parts of an avoirdupois lb. and tbe Angle of the first Section

= 9,,°38'.

If half the number of sections on one side of the arch in Model
No. 2. are removed, and a force of 11 pounds weight, acting in a
direction parallel to the horizon, is applied to sustain the other
half of the arch, the whole will be kept in equilibrio by a weight
of 9.437 added to a weight of 1.563, making altogether the weight
Of'll pounds. avoirdupois.

On tbe lJeneral Proportion of the Pressures on the lowest Surface

of each. Section intbe Model No. 1, expressed in general by w x

Cotang. AOx &c. Vc.

In the case of the pressure on the section C = w x, cotang. AO

x sec. Vc: here w = 0.434°2 pounds; the angle of the abutment

= 15°, the secant of which = 1.°352762, and the cotang. of 5°
-being = 11,.43°052, the pressure on the lowest surface of the

section C = 5.1359, the equilibrium weight, when ail the sections
below the section C are removed, in the Model No. 1, and the
weight of sf pounds is applied against the lower surface of C,
the friction weight being = 0.3641, when the brass central arch

is removed, the whole will be sustained in equilibrio.

Similar Experiment upon the Model No. 9-

The weight of w, that is, the weight of the first section in
Model No. ~, is the same with the weight of w in Model No 1;
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that is, w = 6.9444 ounces, = 0.434°~ pounds avoirdupois;
which is the weight of It cubic inch of brass; and, by the rule in
page 10, the pressure on the lowest surface of C = w x cotang.
9,°38' 0" x sec. Vc=9.5762.* If, therefore, an the sections below
C are removed, and a weight of 12t pounds is applied against the
lowest surface of C, when the centre brass arch is tak~n away, the
remaining arch will be sustained in equiIibrio.

By a similar experiment, the proper weight = w x cotang. AO

x sec. V~applied in a direction against the lower surface of any
other section Z, or perpendicular to it, would have the effect of
sustaining it in equilibrio.

It has been remarked, in the First Part of this Tract, (page 5.)
that if the materials of which an arch is constructed were perfectly
hard and rigid, so as not to be liable to any change in their form,
and the abutments were removably fixed; an arch, when the
sections have been adjusted to equilibration, although little de-
viating from a right line, would be equally secure, in respect to
equilibrium, with a semicircular or' any other arch. This observa-
tion applies in some degree to the construction of a rectilinear or
flat arch, according to a method employed by engineers, for trans-
mitting water through the cavities of the several sections, each of
which, when filled with water, will be nearly of the same weight;
and for this reason it would be expedient to adopt the plan of
construction. which is numerically represented in Table VI. or one
of the various other plans" in each of which the weights of each
.section are assumed = 1.

Constructionof a Rectilinear Arch. Fig. 11.

COC represents a horizontal line, in which the lines OA, AB,
BC, &c. are set off at equal distances from each other. From tlie. w == .4-H027 cotang. 2.°38' o' = ZJ.]4.zS69 sec.,Vc==1.014763 '"' X cQ~ng. Ao
X 9°4i' 8" == 9'57620.
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point 0, considered as a centre, draw Oa inclined to the line OV:J
at an angle of 5°: 'through the point 0 likewise draw Ob, mclined
to QV, at the angle 9°55' go"; also through the point 0 draw Qc
inclined to ~V, at an angle = 14(142' 23"; and draw through the
point Aa paraIlel to Oa, through B draw Bb parallel to Ob; like-

wise through C draw Cc parallel to Oc, &c. these lines, repres~nting

thin metaIlic plates, of which the angles are 5(1,4°,55'3°", '4°46' 53,
&c. respectively; and the sections ~V, Aa, Bb, Cc, &c. being formed

of dimensions similar and equal to the sections on the Qther side;
that is, VD, aa, forming an angle of 50; Aa, Bb~4° 553°"; and
Bb, Cc, an angle of 4° 46' 5311,&c. the whole will c6i1.stitutea recti..;.

linear arch of equilibration, supporting itself in: equilibrio by the
help of small assist<mce from beneath;'and admitting the wate'r

to pass freely through the cavities of the sections.
, The geometrical figures'were drawn' to' a scale equal to' the

QriginalModel; that is;, the ~dius of Ffg~;7. was 11,¥i28"l'inches)

and the radius of the Model No. 2. = 9.1.7598 iricnes;.'the erigrav..

ing of th~e drawings are.in. propOrtIDn~to ,thbSe" Dtl'mbers;: that
is, Fig. 7. and in the Fig; 8. jn' the'proportion.,rifl't:o:g., It may

be added, that the'Figure 9'\va,s draWn toaiadius' =:;:;.!:toinches,

which is engraved in proportion. oft; 'ori1o:a radius = S'inches.'
The radius = OV (Fig~ 8.) in the originahlrawirig.iS == 21:7598

inches, and OQ is, "by Table X.:;::=;gl236&,.the difference :of these

quantities will be 12".523° in the origin~:.drawing, 'orirlthe'e'n-

graved plate, €qual to'one~third.part; whrch',makes:the lpWVq:equ~

one-third of the tang: orthe al1gle oL~he aii>titment;:t(f'a~tadi1is

1~:523° = 8.831, scarcely differing, fr0in'tne:"figure,;in' the en-
graved plate.

Fig. 9" is drawn to a radius of 10'inChes, :OV in the engraved
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plate -: ~ inches; which makes the line Ok = OV :::: ,pO;:' 5~B

= 1.164~ whence the line Vk is equal to the tang. of 41010'51",
when the radius 6.1642 = 5'3926, which is nearly the length in
inches 6£the line Vk in the engraved plate.

On the Use cifLogarithms, applied to the Computation of the sub-
joined Tables"

Logarithms are useful in making computations on mathematical
subjects, particularly those that require the multiplication or divi-
sionof quantities, by which the troublesome operations of multi-
plication and division are performed by corresponding additions
and subtractions of logarithms only. By the preceding proposi-
tions it appears, that the quantity most frequently occurring in these
computations is the weight of the first section, represented by w,
~d thecotaI!g. of the ap.gle.ofthe fir.stsection. In the Table No. I.
(Model No.; 1.) Fig~ 11.,.the. angle of the first section AO= 5°,
and in Table No. IX. .Model No. 2, .Rig. 13, the angle of the first
sectionA~:;-20S8' ofl,;.'.inthe two Models which have been described,
~ waghts:-:ofthefust(&ec.tionin each Model are equal, each being
thewcig~ fif a;£ooic jnch.-and .haJ£..;()fb,rass;. the specific gravity
~~ra&8.3s to,:thatof7ririn:~ateI' i'iT:a.proportionnot very different
from that:cf 8 to..:t;. ;s6in~times:a.Httle exceeding, or sometimes a
falling"'shbrtnoftba.t proporti6n;on an average, therefore, the spe-
cific':gmv~ o£cbraSsmiybe taken; to that of water as8 to i: a
~~bic:fQot:is equat.m capacity 172R cubic inches, and as a cubic
f~ot of rainwater':has.heen foimd.:byexperiment to weigh 1000
ounces avoirdupois almost exactly, it is evident, that the weight of
a f;;ubiQinch of br.ass, of 'average specific gravity, weighs nearly
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8 x .57870 = 4.62960 ounces, therefore It cubic inch of brass,
weighs 6,9444 ounces, = .434°27 parts of an avoirdupois pound

= w;* the logarithm of which, or L. w=9.6375176.
One of the most troublesome operations in the computation of

the Tables subjoined, is to ascertain the weight of a single section,

from having given the conditions on which the weight depends,

which are as foHows: The weight of one of the first or highest sec-
tions of the semi arch ; the angle of the given section, with the angle

of ~he abutment thereof, together with the angle of the abutment

of the section preceding: to exemplify this rule, let it be proposed
to find the weight of the section P in an arch of equilibration,

in Table No. 1. the first section of which= 5°, the ang~e of the
section given = 5°, the angle of the abutment of VI = 75°, the

angle of the abutment preceding or VD= 7°°'
Computation for the weight

in avoirdupois lbs. Computation for L. 111.

Log. w = 9.6375176 Log. :;~; = 9.7624563
8L. cotang. 5°= 1.058°482 L. 16= 9.69897°°

L. sin. 5°= 8.94°2960 L.; = 0.176°913
L. sec. 75°= 0.587°038
L. sec. 700= 0.4659483
L. weightofP= 0.6888139
Weight of P = 4.8844 Ibs. avoirdupois.

L. w = 9.6375176

. In the Model No. I. the dimensions of the first section of the semrarch are as follow:
the base = 1 inch, the slant heighton either side == .961, and the breadth = 1.084; which
makes the area of the first section parallel to the plane of the arch - 1 square inch; thi,
multiplied into the depth or thickness,. makes the solid contents of the first sect.ion == 1
X I X If, which is a cubic inch and half a cubic inch.

In Model No. z. the dimensions in the nrst section of the semiarch; tbe base, or the
chord of 2° 38' 0', to a radius of 21'7598 = 1 inch, the slant height are as follows: the
area of the first section parallel to the plane of the arch = I square inch; this multiplied
into the deprh or thickness, which is If inches, the solid contents of the first section be-
comes::: I X 1 X It, or the solid contents of the first section = If cubic inches = '9782,
and the breadth = 1.°44:9, which makes the s01id contents of the section = It cubic
inches, the weight of which = +'3°27 parts of an avoirdupoir; pound.

G
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By this means, another method of computing the weight of any
section P is obtained, by putting the sum of the weights of all the
sections from the summit to the section P; that is, the sum of all
the w~ights from AOto po = Sp, and the sum of the weights of all
the sections from A to 0 = So, the weight of the section P will
be = Sp- So, for the rule in page 10,

Computation for SI'.Log.w - = 96375176
L. cotang. 5°::: 1.0;8048:
L. tang. 75°= 0,5719475

L. Sp == 1.2675133 Sp = 18'5If

Computation for 50.

Log.nr - =9.6375176
L. cotang. SO= LOS8Gf8:z

L. tang. 7°° = °A-38931-1--
L. So = 1.134-1-999So = 13.630

Sp = 18.514

80=13630

Sp - So == weight of the section P::: +.88+, as l1efore determined.

The computations of the dimensions (Fig. 7) of the brass sections
in the Model No. 1. are much facilitated by the use of logarithms,
particularly in finding the slant height Ot from the centre 0
of any section (K,) and the height of the section itself, or
St = Tt.

Computation of the slant Height OTof tbe Section K.

It is first necessary to ascertain the area of the surface OST
comprehended between the radii OS, OT, and the chord ST.

Since the radius OS = 1~-46~81 and the angle SOT = 50, half
SOT = 2° 3°' 0", the

Sin. of 2°3°' 0" or s = 8.6396796
Cos. 2 SO ° or e = 9.9995865

L. se = 8.6392661

L.
:c = 1.3607339

Log. r = 1.059~91&

2

L. r" = 2.1185820

L. se ~ 8.6392661

Log. of the area OST., orL. se x r'l.= 0.7578481
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The areaOST =
The weight K =

K+rsc=
L. K+r"se=

L l.,-=se

5.72595
2.19175

7.9177°
-0.8985990

1'3607339

K + r" seL. -se- = 2.2593329

L /K+r~ 666.V - = 1.129 4-se
Ot = IS.47928

Radim~OS, or
.
r = 11.4628;1

Height of the section K = it = 2.01647

Similar Computation for tbe Section L.

L. r"= 2.1185820

L. se= 8.6392661

Log. of the area OTV = 0.7578481

.
area OTV = 5.72595

L= 2.7°196
L +

ro.sc= 8.42791

L. L + r" se = 0.9257199

L. :e == 1.,3607339

L L + r" se 86 8. Lse = 2.2 453
L. /L+ r"sc 6V

' == 1.14322 9se

Ov = 13.90679
r= 11.46281

Height of the section L = vv = 2.44398
G2
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For the Section M.

L. r= 2.1185820
L. se= 8.6392661

Log. of the area OVU = 0.7578481
area OVU = 5.72595

M = 3.47366

M + r"se = 9.19961

L. M + r" se = 0.9637694

L. s:= 1.3607339

L.~~ = 2.3245°33

L / M + y" se
6 6. . = 1.1 2251. se

Du = 14.52953
r = 11.46281

Height of the section M = uu = 3.06672

~.(: /2 W + {/ b x s~
Computation 0 V' sin.La .

L. a= 1.0827423
L. b = 1.°9+1566

L. sin. LO= 8.8806960
--

L. ab x sin. LO= 1.°575949
a.b xsin. LO= 11.41812

2W= 7.
--

L. 2 W + ab. x sin. LO= 18'4181~
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L. 2 W + ab x sin. La= 1.2652453
L. sin. LO= 8.8806960

L 2W + ab X sin:"'"iP
.

si." La

L /2w+:lbxsm.Lo 6. . -. a = 1.192274Sln. L
/2W + ab X sin. La 6V .

L = 15.5 949SIn. 0

2.3845493

See page 19 and page 29, in which the computation is inserted

f h
. /2 W+ a b X sin. 'F

0 t equantltyW=V -. Ro .S1.I.

Computation for Ma.

L. a= 1.1263101

L. b = 1.1375598

L. sin. Ma = 8.8391355

L. ab x sin. MO= 1.1°3°°54
ab x sin. MO= 12.67667

2 w = 7.5--
2 W + ab x sin.1r = 20.17667

L. 2 W + ab x sin. MO = 1.3°48496
L. sin. MO= 8.8391355

L 2'U1+ a~_sil1. MO - 2-465714 1. sin. Ma -
L. ~~b ~~jn MO,= 1.2328570so..

/2W + ab X sin. MO
V

' ;sin.MO = 17.0945
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Breadth of the Section L.

Log. slant height from the centre"= 1.1922561
L. 2 = 0.3°1°3°°

L. sin. tLO = 8.5799524
Log. breadth of LO= 0.°732385

Breadth of LO= 1.1836

Breadth of L in the drawing = 1.1838

2 error.'

Breadth of M.

Log. slant height from the centre = 1.2328570

L. 2 =°.3°1°3°0
L. sin. t M°-.:.. 8.53851 7°

L. breadth of MO= 0.°72404°
Breadth of MO= 1.1814

Breadth of M by the drawing = 1.1814

Explanatory N()te~ on the Propositions in Pages 13 and 14 in tbe }1zrst Part

of this Tract, in which AO= 5°, BO= 5°,=- Co == DO, &c. according to

tbe Explanation in Page 12. Tbe initial Pressure = ,I
I

A'"
or putting

2 X SIn. 7:
W = 1, the initial Pressure or p = t x cosecant 2° 3°' 0".

L. P= 1.°5929°4
L. sin. AO= 89402960

L. tang. 2° 30' 0" = 8.64°°931
L.p x cos. AO= 1'°576346

Px cos. AO= 11.41917 L.Px sin. AOx tang. 2°3°' 0" =8.6396795
VIJx sin. (:lgo' 0" = .°4362 Px sin. AOx tang. 2 go ° = .°4362

L. P == 1.°5929°4
L. cos. AO= 9.9983442

11.46279 :p
It appears from this computation that p X sin. A- X tang. V, is equal a X sin. V', when the

weight of the first section, or a = I.
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The Weight and .Pressure on tbe lowest Surface of tbe &ction B.

L.P= 1.°5929°4 L.P == 1.°5929°4

L. cos. BO== 9.9983442 L. sin. BO= 8,94°2960
L. tang. Vb==9.1194291

L.P x cos. BO == 1.0576346

P x cos. W == 11.41917 L.pxsin.BOxtang.Vb==9.1190155
b

.
Vb . Bo Vbx sm. = .13153 pxsm. x tang. == .I~P53

P x cos. BO==11.41917
P x cos. BO

+ P x

sin. BOx tang.Vb==11.5507°
11.5507°=Q

L. P== 1.°5929°4

L. sin. BC== 8.94°2960
L. sec. Vb== 0.°°37314

L.pxsin.BOxsec.Vb== 0.°°33178

pxsin.B"xsec.Vb== 1.°°76

ERRATA.
Page 5, line 5, for cotang. A X sec. A, read cotang. A° X sec. AO.
-- 6, - 19' for that part of weight, read that part of the weight.
- 10, - 20, for p = w X cotang. AOX sec. read w X cotang. AOX sec.Vs.
- 14, - 12, Jor area Kls, read Ttls.
-- 14,- I7,forx"'-r"'sc=k, readx"'sc-r"'sc=k.
- 23, - 5,JorFig.9, readFig.8.
- 24, - I, Jorx X cotang. B, ready X cotang. B.
- 24, - 5,Jor x X cotang.B., readz X cotang.BIS.
-- 24, - 16,for in No. 2, readin the ModelNo. 2.
- 28, - 9,for 01, readOV.
- 28, - 12,for the pointIl, readthroughthe pointsU.
In Table No. IV. in the weight of the section I, insert 0.654983'
In Table Ne. X. for OV"', read QV taken at 21.7598.

Printed by W. Bulmer and Co.
Cleveland.row, St. James's
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Angl~s Angks of Weights of each Entir~ Pr~lSnres OD then Weight. of tbe Semiarchea.

o' of S~c- the Abut- S~ction. ]owelt Surface of each
~dons. mt:nts. Section.- - -

A 5° Va 5' 1.00000 Sa = 1.000000 11.47371 = P
B 5 Vh 10 1.0154~ S b = 2.015426. 11.60638 = q
C 5 Vc IS 1.°4724 Se = 3.062673 1183327 = r
D 5 Vd20 1.°97 5~ Sd = 4.1601g6 12.16360 =s
E 5 V, 25 1.16972 S e = 5.329920 12.61165 = t
F 5 VI 3° 1.2692~ Sf = 6.599144 13.19829 = v .

G 5 Vg35 1.4°427 Sg = 8.0034~0 13.95351 = U

H 5 Vb4° 1.58754 S b -:- 9.59°960 14.92087 = Ut

I 5 Vi 45 1.83910 Si = 11'43°06 16.16453 =x
K' 5 Vi 5° 2.19175 S k = 13.62181 17.78swo =y
L 5 VI 55 2.7°196 S I = 16.32377 19.92768 = z
M 5 Vm60 3.47366 Sm = 19.79743 22.86010 = a
N 5 VI! 65 4.7144° S n = 24.51183 27.04880 = b
0 5 V. 7° 6.89199 So = 31.4°382 33.41923 = c
P 5 VI 75 11.2537 Sp = 42.65753 44.16234= d

i 5 V'l 80 22.1655 S q = 64.82305 65.82g04 == e
5 Vr 85 65.8171 S r = 130.6401 131.145° ==1

TABLE No. I.

Shewing the weights of the several sections or wedges wlllch form
an arch of equilibration, when the angle of each section is 5°;
and the weight of the highest wedge is assumed = 1. Also
shewing the pressures on the lowest surface of each section,

considered as an abutment.
The weights of the tWo first sections A in each serniarch = 1.

The lateral or horizontal pressure =pi = 1
~

.43005~, Sd = the
StIIDof the four successive weights = A + B + C + D, &c. &c.



-
Sections.'Weight,s of the Tang. of the angles of the sections. Angles, of the Angles of the ahutment,. Pressures on the lowest surfate of each seclion.

sectIons. seCllOns,
. ~-. -

Cotang. AO= 11 430°5 = pi
-- -- -- ,- -- ----
A 1.00000

a X CO$.VO t AO
5° 0' 0/1 Va= 50 0' 0/1 p= 11.4,7-871a= I '

'vo = ang.p+ a X SID. ,

------. --- ------
B b= 1.38053

b.x cos. v. .
t' . Bo 6° 45'53" Vb= 11°45' 53" q= 11.67533b . V = ang.p + X SIn. ~.

--;-;-cos..Vb.
tang. CO\110 ~6'19i'

---...- -
Gc= 2.51922 Vc= 23° 12' 12/1 r = 12.43599q + c X 511].Vb-- -- -"-- ----
Dd= 4.4°742

dx '."',v' = tang.
D~'5° 57' 5" Vd= 39° 9' 17/1 s = 141.74°°4r + d x S111.VC

e cos. Vd
Ee= 7.°3°74

x , - tang. Eo 15° 52' 6" V' = 55° I' 23' t = 19.93919s + e X SUI.Vd
- \-- ---..--

cos, V,
F f= -10.36922

f x, = tang. FO 110 48' 25/1 VI= 66°49' 48" v= 29.°5°15t +fx sm,v'
-- -~. -.--

Gg= 14.39746
g x cos. vt Go .t37' 48" Vg= 74° 27' 36" u= 42.66"b03

' vt = tang.
v + g x 5111.

. --
H h= 19.804,8c

h x cos.Vg, t HO 4° 471 14" Vb= 79° 14' 50/1 w= 61.2644,6b ~= ang.u+ x slO_g .- ~-- -"'-..-
I 24.39556 i x cos.Vb c

3° S' 24' 'Vi = 82° 18' 14" 85.35309t= . . Vh= tang. I' x=71)+ I X sm. ----
"k x cos. Vi t KcK k= 3°.289:12 k . Vi= ang. 2° I' 51' VA= 84° 19' 19" Y = 115.44084.t'+ x sm. .

TABLE No. 11.

In which the a11gIesof the sections are inferred from the given weights thereof, by the rule demon-
strated in page 27 of the First Part of this Tract, and proportional 0 the versed sines of a circle
terminated by a horizontal line. The angle of the first section Aa = 5°, and the initial pressure
parallel to the horizon =11.43°°5; a the pressure on the lowest surface of the first section

=,11.4371.



.Angles betw~~nthe
Angles of lowest snrfae~of

the s~c- each .~ction and Weights of the In<:- W ~igbtsof the suceo-
tions. tbe vertical, or uWve secci.om. sive semiarelles.. Pressuru - the abutment&.

angl~s of the
abutments.-

A 1° Va 1° 1.000000 1.00000 P = 57.29869
B 2 Vb 3 2.00244° 3.00244 q = 57.36859
C 3 Vc 6 3.018978 6.021.4!1 r =57.60538
D 4 Vd 10 4.08°347 10.10176 s = 58.17374
E 5 Ve 15 5.249031. 15.35°79 t = 59.310g<>
F 6 Vf 21 6.64°753 21.99154 V = 61.36580
G. 7 _Vg 28 8.47005° .3°'46159 u = 64.8848~
H 8 Vb 36. 11.16197 41.62356 w = 70.81421
I 9 Vi 4.5 15.6'6635 57.28991 X = 81.02014

K 10 Vi 55 24.52854 81.81845 Y = 99.88185
L 11 VI 66 46.85674 128.6751 Z = 14°.8525
U 12 V'" 78 14°.8525 269.5276 a = 275.549°

TABLENo. Ill.

In which the angles of the sections are 1°,2°, gO,&C.making the
angles of the abutments 1°,3°, ft, 10°, for inferring the weightS
of the successive sections and the sums thereof, with the pres-
sures on the lowest surface of each section, as computed from
the general rules in page 15, as they are inserted in the 5th,
6th, and 7th columns of this Table.



TABLE No. IV.

In this Table the angle of the first section A°= 5°,and the angles
BO,Co, DO,&c. are assumed of any given magnitude, taken at

hazard = 6°, 8°, 12°, &c. making the angles of the abutments

= l, 11°, 19°, 31°, and p = 11.4737, &c. The initial pressure
P' = 11,43005.

Angles contained
~ between tbe lowera.Angles 'urfaceofeachsec-g of thr- ,ion and the vcrti- Weights of the sections.
~ section; calline.

A 5° V~= SO

B (S Vb = 11

C 8 Vc = 19
D 12 VJ= 31
E 10' Ve= 41
F ,9 V/.= 50
G4 Vg,=S4
H 2 Vb=56
I 1 Vi=57
K 7' .Vi:=64
L 4' VI = 68
M 3 Vm= 71
N 5 V" = 76
0 ~2 Vo=88
P 1 VP-89

Weights of the semi-
arches, found by
calculating from
the values inserted
in page 14, of the
Dissertation on
Arches.

a = 1.000000 1.00000

b= 1.22'1776 2.22177
c = 1.713895 3-93567
d -:- 2.932180. 6'.86785
e'= 3.068117 9.93596

f -:- 3.685800 13.62176
g-:- 2.11°3°0' 15.73~w6
h ==1~213696 .16.94569
z = .654983 17.60067
k5$M3og 23-43498
l= 4.855258 28.29023

m -..: 4.9°4875 33.19511
n =12.64806 -45.84317
0 ~ 281.4682 327.3113

P= 39.7.51°7 654.~220

Entire pressures on the
lower surface of each sec-
tion, considered as aQ
abutment, found by cal.
culations from the nIne.
for the pressu.res inserted
in page 14 of the Disser-
tation. on Arches.

11.47371 = P
11.6439~ = q
12.08864 = r
13.33465 = s

.

"15.144..92 = t -
17.78193 = V
] 9'44,585 = u
20.44°14 = w
20.98633 X
26.°7:373 = Y
3°.51193 == z
35.1°776 = a
47.24652 = b
327.5108 = c
654-9206 = 4.



Sections.
Wcights Angles of the

I

Preuures pn the lowest surface of each section.of the Tang. of the ang1e.s of the sections. sections. Angles of the abutments.
sectionl.

TABLEV.
Shewing the angles of the wedges in an arch of equilibration, in' which the weights of the several sections are

= 1, the angle of the first section = ISo; the initial pressure parallel to the horizoQ..P'= 8.732°5, and the
pressure on the lowest surface of the first section.= p = 8.8637°'

a=1

b=1

c=I
d=f
e=I
1=1
g=1
h=/
i =

I

1 "

a x-?-cos.jVO
.

tan g. AO

1

1
,

5° 0/ 0" .
,

Va= 150 0/ 0"
1

Cosec.A=p=S.86S7°p + a X 5111~
VO

I

b x,cos.va,
tan g'. BD

1

1S011/12"
-

/

Vb= 28°11'12"
I

p + b x sin. Va

I

~ cos. :Vh
,- tan g . Co

.

/
10° Q6' 25"

I

Vc= 38°47' 87"
j

'

q + c X SIn. Vd a

I

,d X
c~'=tan g

' .DO=:;
,

8
'

°1
,,

1'2 7"
I

Vd=4~ 59' 4"r + d X s1n. Va

,

e ~ cos: Vd
'- tan g. EO =

I

6°16' 38"
I

V~= 530 15/42"s + e X Sill. V' .

I

j x cos:V'
= tang. Fe = ,

4°51' 22"" Vf 58° 7/ 4"t + j X sw. VI
'

1

'

g X cos:VI
= tan g . GO =

f
'1/49' Q"

I

Vg= 61° 56/ 7"v + g x S111.vg a .

1

--.!!?<~3S..Vb = tan g. HO =
I

8°
Q/18//

I

Vh= 64° 59/25"
It + h x SIO.Vb a

I i x.COS'.V;. = tang. XC =
1

2° 29'5f://
I

Vi= 67° ~8'1.8"
If W'+ I X sm.V'



Weight.
Sections,. 'of the

.eetions.

A a=1 1

B b=I 1

c c
I

1

D d~1 1

E e=1 1

F 1=1 1

G g=1 1

H h=1 1

I l =
I

1

K k=l 1

L 1 =
I

1

TABLE No.. VI.

Shewing the angles of the several sections, in which the weight of each of the sections = 1, and

the angle of the two highest sections = AO; in eac.h semiarch = 5°, the initial horizontal

pressure = cotang. 5° = 1L4'3005,;and therefore the pressure on the lowest surface of the

first section = cosec. 5° = 11.47371.

,

I

Angles of the

I

Pressures on the lowest
.T~ng. o{ thcangles QCthe sections. 'sections. Angles of the abutments. .urface of each .ecti"n.

I

'a ~COS.Vo,,= tal~g. AO=
1

5° 0' 0"
I

Va= 5° 0' 0"
I

P= 11.47371p' + a X SJil. VD
'

,

I

,~.x~os-.v.
= tang,

. B
,

o

1

4° 55' 80"
\

Vb= 9°55' 30"
I

q == 11-.60386:p + b x sw. v.:. ,

1'-q'~XC~s;ir\b= t~ng.Co =14046' 53"\ Vc = 14°42'23" \
r = 11.81728

I- ,:~; ~o:iTv'= tang.
DO = 14° 34' 52"

I
Vd= 19017'15"

\

s = i 2.1°992

, s ~ ~.~O:::'dVd= tang. EO:::;: 14° 20' 20111 Ve= 23°37' 35"
I

t = H~.47598

I

1 x cos: v' tang. FO =
1

4° 4' 11"
I

Vf= 21" 41' 46"
I

v = 12.9°929
t +1 x SIO.y' -

,

g x cos'
, -
VI,

== tan ,
g. GO =

1

3° 47' 16"
I

Vg= 31° 29' '2"
I

U = 1 3 4°333v + g x SIn.vr .

I
u ~~ ~s~i:~vc= tang'.HO = IgO3°' 15"

I

Vb= 34°59' 17"
I

W = 13"95167

, w ~xi~s~i:.hVh= tang. 1°= 13° 18' 42"
I

Vi = 38°12' 59" I-x = 14 5"~815

I or: ~ ;s;i:,iVi= tang. Ko= 12057' 52"
I

VR= 41°10' 51" Y = 15.18711

1

y ~~ ~O:'i:"VA= tang. LO= 12°43' 10"
I

VI = 43° 54/ I"
I

z = 15.86340



Angla
Pressuru on the lowestSections of the Angles of the Weights of tbe Suuu of the weights of the

SectiolU. abutments. sections. sectiolU. surface of each section.- - - -
0'

0 I

A 2 3° Va= 2 8° 1.00000 Sa = 1.000000 22.92558 = P
B 2 8° Vb= 5 ° 1.0°882 Sb = 2.0°882022.99125 = q
C 2 8° Vc = 7 3° 1.01151 Se = 3.01583123.1014° = r
D !l 3° Vd = 10 ° 1.02322 Sd = 4.°88552 23:25714 = $

E 2 go Ve = 12 go 1.°39°9 Se= 5'°77642 2~l45986 = t
F 2"30 VI = 15 ° 1.°594° SJ= 6.137°4723.71172= v
G 2 3° IVg= 17 go 1.°9448 Sg= 7.22153°24.01526= u
H 2 8° Vb = 20 ° 1.11476 Sb = 8.33629° 24.37368= w
I 2 go Vi

.
22 8° 1.15°76Si - 9.48705024.79086= x

K 2 3° VJ.=25 ° 1.]9315 Sk = 10.68020 25.27151 =Y
L 2 3°. VI = 27 3° 1.24374 SI = 11.92394 25.82129 = Z .

M '2 3° V"'=30 ° 1.29956 Sm = 13.2235° 26,44699 - a
N 2 3° V"=g2 go 1.36780 Sn = 14.5913° 27.]5674 = b
0 2 3° V. = 35 ° 1.44608 So = 16.°8788 27.96083= c
P 2 3° VP= 37 8° 1.5378° Sp = 17.57468 28.86956= d

~23° V'l=4° ° 1.64386 Sq = 19.21854 29.89874 =e
2 3° Vr =42 3° 1.76889 Sr = S!0.9874331.06533 =f

S 2 3° Vs = 45 ° 1.91634 Ss = 22.9°377 32.39081 =g
T 2 3° Vt =47 3° 2.°913° St = 24.995°7 33.9°187 = h
V 2 go V.= 5° ° 2.go058 Sv = 27.29565 35.63193 = i
U 2 3° V. =52 go 2.55312 Su = 29.84877 37.62355 = k
W 2 3° V'W=55 0 , 2.8511 2 Sw = 32.70989 39.9~3149 = I
X 2 SO VJt = 57 3° 3.25182 Sx = 35.95171 42.62755 = my 2 3° ~j= 60 0 03.71877 Sy = 39.67°48 45.8°753 == n
Z 2 So V*=62 go 4-32724 S% = 43.99772 49.602 24!== 0
A 2 go Va = 65 0 5.11958 Sa= 49.1178° 54.19492 = P
B 2 3° Vb= 67 3° 6.17727 Sb = 55.29457 59.85°41 == q
C 2 8° Vc= 7° 0 7.633°0 Se = 62'92757 66.96511= r
D 2 3° Vd = 72 3° 9.71889 Sd = 72.64146 74.11813 = s
E ~goV'= 75 0 12.83654 Se. = 85.47800 88.49336 = t

TABLE No. VII.

Containing the weights in an arch of equilibration, in which the

angles of each section are = 2°3°' 0", the pressure on the lowest
surface of each section; the initial pressure parallel to the horizon

= cotang. 20 8°' = 22.9°376 = p'; and the pressure on lowest
surface of the first section = cosec. 2030' = 22.92558.



TABLENo. VIII.
Shewing the angles of fifty sections, forming an arch of equilibration, ca1culated from given weights

of the sections when the' angle of the first section is one degree = A0; and the weight thereof is

denoted by unity; the weights of the successive sections encrcasing by equal differences from I to 3,
which is the weight of the twenty-fifth section = Z in each semiarch.

'
The initial pressure parallel

to the horizon p' = corang. Ao = 57.28996: the pressure on the lowest surfacq ef the first section
is =p = 57.29868 = cosecant AO.

\

weighU'

, I

An les ofthe

I

1

1

PreSSUIes on the
Sections. of ~he Tang.of the anglesof the sections. , s~ctions.

'

AngTesof the abutments. lowest
,

s~rface of

I
sectIons.

I I
each SectIOn.

A a=
1

1.000000
I

,~X
cos.

V~o - tang.AO =
1

1° 0' 0"
I

Va = 1° 0' 0"
I

p = 57.29868p- -~X sm,

b
I

8
I

b X-cos. Va. , BO
I

0

I

Vh 0
"

I

B = 1.0 3333
P+ b X sin. Va = .ang. = I 4-'57",4-57 = 2 4-57,4-57 q = 57'32782

C C= 11.166666
l!l~: ::'i:'bVl>- tang. Co= 110 9' 51",2°4- I

V,
= 3° 14-'+8",661

I

r = 57.382°5
D d =

I
1.25°000

I r ~~ ;:~:'v, = tang.Do,= I

10 J 4' 39",795
I

Vd= 4°29'28"'4561s = 57,46639

E e ,=
I

J'333333 I $ ~~ ~O:;:~d = tang.EO=
1

1° J9' 21",558
I

V, = 5° 48' 5011'°141t = 57.5861+

F j = I
1.4-16666

t t~~;:'i:"V' =
tang. F°:= I

JO23'54-",634-1VI = 7° 12'4f',648 I
V= 57.74-684-

G go=
I

1.500000
I

~X cos: vi
f = ta

,

ng. GO
, = I

1° 28' 16"'987
" Vg = 8° 41° 1",638

1

11 = 57.954-27. v g X sm,V ,
'

.

H b =1 1.583333I ~~ = tang. HO:::::
1 1° 32' 26"'4-17 I

Vh = 10° 13' 28",0551 w:::::58.214-35

I i = I
J.666666 r w ~~ ;S:,:hVh= tang.1°=

I
1° 36' 20",646

I

Vi = 11°49' 48",7°1
1

x = 58,53326
K k=

I
1.75°000

I x ~~ ;:'i:"Vi =
tang.KO=

I
1039' 57",365

I

V.= 13°29'4-611,0661Y = 58'9169~
L 1 = 11.83~333I '*~::::: tang. LO= I

JO43' 14",297I V' = 15°J3':~0",3631Z = 59.37154-

M m=
I

1.916666
I

~~::::: tang. MO=11°4-6' 9",2941 V"':::::16°59' 9",6671 a = 59.90.315

N n = 1
2.°, °0.00.0

I

'.

+
"Xcos

,

~V" = tang.N
,

o= 1,1°48'4-°, "'404-
1

V" = 18°4,7' 5o.",07J
I

b = 6°'51760:~. a n X.sm. V.. ~

0 0 =
I

2.o.8H33,I,
b ~~ ~o;;n~~/1: tang~ 0°=11050' 45",954 I

v. = 20°38' 36",071 I
C = 61.220.67

p p=
I

2.16.6666
I

:+
P)(cos,V' _tang. po'

I
1° 52'2f',61J

I

VP~22031'~O~ ,'715
I

d=62.0176 7, p, X s\n. V' '

,

'

Q.q =
I

2.250.000
I d ~~ ~o::~:Pv,= t~ng.~:= 11°53'35",6II

I

Vq = 24° 24 36"'3261 e :::::~2'91365

R r = 12'333333 I ~~ '= tang.RO=
I

1° 54' 18",421
I

Vr = 26°IS'54",74711= 63.91325
S $= 12'4-166661~%::::: tang. So= 11°5433",186 I

V,
= 28° 13'27",933/g = 65.02°7°

T t = 12'5°~OCOIg~~s~i:'sv, :::::tang. TO= 11054' 20",477I
Vt = 3°0 7' 48"t,pOI b = 66,23967

U u = 12'583333'r k~: ;:'i:.tVt = tang.DO:
1

1° 53' 41",334
I

Vu::::: 32° l' ~9"'744
1

i= 67,57337-
V v = 12.666666

I i ,;,;~o:;n~~u = tang.Vo: -, 1° 52'37",272
1

VfI :::::33°54 7",0161k = 69.0.24-4-9
W w::::: 2'75°~00

I ~~ = tang.Wo=I
ID 51' 10",121

I
Vw:::::34° 45' 17",13711 = 7°.59525

X z:::::12.833333
I~~ =1ang. Xo:::::['104-{2Z",OCo.

I
V" =37°3+39",1371m= 72.28737

Y y= 12'916666
I ",~ ~s;i:"'V" = tang. yo = 11°4-7' 15",273

I

VJ = 39° 21' 54",410
I

n = 74.10210

Zz = J
3.000000 .~: ;:'i::';', ::::tang.Zo ::::

! 1°41' 52",4-29
I

VX= 410 6/4-611,8391 0,= 76.04-0%+



TABLE No. IX.

Containing the angles of thirty-four sections or wedges, constituting the model of an arch, No. 2~
the weights of which increase regularly in each semiarch, from 1, which is assumed as the weight
of the first section, to 5, which is the weight of the lowest or seventeenth section from the
summit: the angle of the first section AO= 20 38' 0", and B, C, D, &c. are inferred by the rule

in page 15, from the weights of the said sections. The initial pressure parallel to the horizon

= cotang. 2°38' = 21.7425 = p': the pressure uP9n the lowest surface of the section A, ca-
.
secant Ao = 21.76555 =p.

~

Wei ghts. of

I I

An"] cs,, of the

I

Angles of the ab atm -ts.
I

Preasures 011the low. at. Tang. of the angles of the acetio.a." ~~
the secUODS.

'

sectiOlIoS. surface of 12Ch sCCUon.

A a =
I

1.00
I

~os..voVa = tan g. AO = ,
2og8' 0',

I

Va = 2° S8'
011

1"

P= 21.76555P + a X SIn. . ..

B b =,
I

1.25
I

p : ~ ;s;i~.aVa= tang. BO= 13° 16' 29/1
I

Vb = SO54' 29"
1

CJ,= 21.85867

C c =
I

1.50
I

q ~:~S~i:'bVb= tang.
,CO =

I
~l 52' 39"

I

Vc = 9~47' 8" r r:==' 22.06gs6

D d =
I

1.75 IT: ~ ~S;i~'V'= tang',Do= /4° 24' 36/1
I

Vd= 14~1'1'44"J $= 22'4~39

E e =
I

2.00
I

s ~ ~ ~O:~~dVd= tang.' Eo = 14° 50' 9"
I

V'-~ 19° l' 53"
t

t = 22'9~7~

F J =
/

2.25
I

t ~.~ ~o:;:'V'= tang. FO= 15° 7' 16" I
VI = 24° 9' 9" t

v =23.82G5~

G g =
I

2.50
I

v ~; ~s;i::VI = tang. G~ =.15° .14' 41"
I.

Vg= 29~23' 50" ,I U = 24"95590

H h=
I

2.75 ., u:~ ~S~i~KVg.=
tang. HO =

i
5° 1.2' 14"

I

Vb= ~4°36' 4"
r

w = 26'4146~

l =
I

3.00
I

'

i X. COS.VhVh.
tang. re =

1

5° l' 8"
I

V
'

i

"

:
$9° 37' 12"

,

{
. X

.-
28.22645

W + I x SIll. , - : - -
.

.

K k =
t

3.25
I

x:~ ~O:~:'iVi= tang.
KO = 14° 4f3' 23"

I

'fk~1Ao 20' 35"
t.

y_:::;:go.40220

L 1=
I

3.50
I

y~~~o:~n~'v~=tang;Lo= 14°.21' 27f/-t'Tl,=48.o42' 2"
I

;=~3'2'94376

M m =
I

3.75
I

'
m ~ cos:Vi 1-= tang. M"'=

1

3
,',

0
57' 33

,

'

,.

'.,
/f

I

Vm= 520 39' 35"
t. a

,

.

3
'

5.-8
,

4656z + m X sin. V, .. J .
'

N n =
I

4.00
J a:: ~o:~~~~=tang. No= ISo 33' 26I101Vn=5~ 13' 1/f

I

b = 39.102°9

0 0 =
I

4.25
I b~: ~S;t:.nv:~ tang. ?~= Iso l6' 2:1;'r

Vo= 59°23'221l
L ~.==4~69992

P P =
I

4.5°
I

p x cos::v, "0

tan
"

g. po:'

1

2°49
.

.',

~I/

I.

Vi
,

6~o 12' ~Ul,.l
,

J' ' 4 6~629 17c + p x SUI. V~ .', .. f
Q q =

I
4.75

I
q ~~ ~s~:'PvP =tallg. Q~.= 12°29' 42/1 j'Vi=()4° 42' 4t

I

e'= 50.87939

R 1= ,~ 5.00 IT:::O:~:'1V1 '.'tartg.R/= 12012'31"lvr' 66"54'35f'lf=5~'4'104

SectioDl.
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A B C iD E ,F G

A'lgles of the aout~ents
-, :zo 38' Of S. 5+ 14 '

9° +7' 8" J+o n' ++" I9° l' 5p' 2+° 9 9' ,1.9°23' 50'
1..38' o' 5.16" .0" 7° 5+ 0" 1O. 32' 0"

:
13° 10' 0" 15° +8' 0" 1:801.6' 0"

Angles at the cehtre' ------ -----
Differtnces of th.e angles 0° 0' 0" 0° 38' 29" 1° 53' 8" 3° 39' 4-+" 5° 51' 53" 8° 2-1' 9' 10° 57' 5°"

,

0 p Q.. R

Angles of the abutment, - - 59. 23' 22' 62° 12' 22" 64-°4-2.' 4-" 66° H' 35'
Angles at the centre - - 36° 52' 0" 39° 3°' 0" +2° 8' 0' ++° 4-6' 0"

--------
Differences of the angles . . 22° 31' 22" 22° ,p' 22.° 22° H' 4-" 22° 8' 35"

TAB-LENo: X.

Shewing the metp<?ddf det~rinining the ,point,s in the vertical line OV, from which lines being drawn to the s~veral
poi~ts, iB,:C,; D, ~, &c.)~ill determine. the positions of the abutments on which the said. sectlons are sustained: when
t1)e ~ngle of the first sec~iOll1\° is assumed = 2° 38', anq t}1eangles of the sections BO,Co, DO, &c. are inferred from
the weights thereof. . The distan.ces OA, OB, OC, &c.being-negative, shew that the numbers corresponding are to be
sub~racted from the radius .QV.

.

iog.r~dius - Zl.7598inch~s -. 1.337()5'SO-~;65S0 1.337655° H;;655O-;~37655O
---~~

Log. sin. differences of angles 8,°4-89897 8.5172383 ,8.80S3263 9.°°93662 9ol61.15H 9.2791883
Log. cosec. of the angles ofthe abutments 0,987+4-80 0'7696505.' 0.6104-225 04-866677 0'388°997 0.309O+I()------------

- . .
0.374-°927 0,6245+38. Q'7534-°38. 0.83~6889 . 0.8879.~;

-
°:92588+3

- OA:::;- 0.0000OB = - 2.366+0C = - +.2.IZSOD =;- 5.6676 OE =- 6,8183 O~:- ~ 7.7252 OG
= - 8'4-311

Log. distances from' the centre
Distances from the centre -

,..

Angles of the abutment
Angles at the centre

Differences of the angles

H
HO 3(/ +"
21° + 0'

I .

39° 37' 120'
23° 42! o'

K

. HO 26' 35'
26° 26'0"

. L

'48° 4-2' i"
28° 58' 0"

M

52° 39' 3p,"
31°36' 0"

N

56° 13' I'
3+° I~ o'---

13° 32' +"
.

15° 55' 12" :. : 18~ 6' 35"
.,

'19° ++ z" 21° 03' 35" 21° ~cf I"-----------

~.
-~

-----

Log. radius - - ~
Log. sin. differences of angles
Log. cosec. of the angles of the abutments

Log. distances from the centre
Distances from the centre -

1.3376550
9'3692713
0.24-57589

1'337655°
.

9.+j'82 178
0.1953S84-

1.337655°
9,4-392091

.

0.155+521

1'337655°
9.52.84-694-

0.12+2034

1'337655°
9.5555066
0.09':i6070

1:3376550
9.5732.678
00803211

~ ---~---
0'9526852

.

0,9712612 0'982,p62 0,99°3278 0.9927686 --°'9;;;:;:;
OH = - 8,9677 or = - 9,3597 OK ==-.9.6032 OL = - 977970M ==- 9,83+8ON ==-- 9.808+

--------------------

.

1.337655° 1.337655° 1.3376550 1.3376550
9.5832562 9.5865923 9,58+°779 9.5762497
0.0651743 0'°532380 0'°+37879 0036z65°

- ~

0.9860855 0.9774-853 °"9655208 0;95°1697
00 = - 9.6847 OP = - 9'+94.8OQ..- +- 9.2368jOR :;::- 8.j}160

Log. radius I -
.

- - -
Log. sin. differences of angles -
Log. -cosec. ohhe angles of the abutments

'Log. distances from the ,centre
Distances from the centre ,-

-



A B C D E .F

5° 0' 0" 10° 0' Gt 15° 0' 0" 20. 0' 0" 2,0 0' 0" 3°° 0' 0.,
+ 5° 0' at

9° 55' 30' 14-°42' 23* 19° 17' 15" 23° 37' 35" '1.7°41' +6"
---------

- + 0° 0' o' 0° 4-'3°' 0° 17' 37' 0° 4-2'45" 1° 22' 25" 2° 18' 1+"-------- ----
- 1.0000000 I. 1. I. 1.
- 7.1169385 7.7°96480 8.094-6510 8.3796996 8.6042%19

0.7635662 0.5953958 04810803 0.397 1~37 0.33275°;---- --- -----... ---

j

G H I K L
Angles at the centre - - .. . - - . - 35°0' 0' 4-°° 0' 0" 45° 0' 0" 5°° 0' 0" 55° 0' 0"
Angles of the abutments - - - + .. .. . 3 1° 29' 2" 34-°59' 17" 38° 12' 59" 41° 10' 51" +3° 5+' It

---- ---- ----- -----......
Difference of the angles .. .. .. - :+: -. .. .. 3° 30' 58" 5° 0' 43" 6° 4-7' I" 8°'44 9" 11° S' 59', ---- ----- ----- ---------..Log.JO.inches - .. . . - - .. - - I. 1. J.ooooooo I. I.-Log. sin. differences of the angles - . - . - - 8.7876673 8.9413296 9'°723232 9.J8558~6 9,%.83+696Log. cosec. angles of. the abutments _ .. - - .. 0.281. 1142 0.24-15380 0.2085668 0.lg14853 o.159ou8--- ----- ----- ---------.Log. distance from the centre - . . - . . 0.0697815 0.1828676 0.28089°0 0.367°739 0'44-2~8%.+Distances from the centre 0 . . - - - - .. OG= + J.1743 OH= =+ 1.5235 or = + 1'9()93 OK=+ 2'3285 OL ==F 2.77°°-Radius addedto the distancesfrom 0 - . .. .. - 11.1743 11.5235 11.9°93 U'328S 12'77°0Log. distances from the centre -

" "
. - .. 1'°4-821 1.06156 1.°7587 1'°9°89 . 1.106J9

Log. tang. of the angles of the abutments .. . . - 9'787°4- 9.8-1-5°3 9.89618 9'94' 93 9'983Jz--- --- ----- ------ ------Log. tang. of the angle of the abutments to radius 1
°

.. . - 0.83525 0'9°659 0.972°5 1.°3282 1.08951ang. of the abutments to radius 10
"" - - . Inches =+ 6 8432 =+ 8.06+9 += 9'3769 =+ JO'785 =F 12.289

TABLE No. XI.

Shewing the method of determining the points in the line av, taken = 10 inches; from which, lines being drawn to the several
points B, C, D, &c. will determine the position of the abutments on which the said sections are sustained when the angle of the
first section A is assumed = 5°,and the angles of the sections BO,Co, DO, &c. are inferred from the weights thereof" assumed

= A= B = C = D, &c.== 1, as stated in Table VI.

Angles at tbe ceAtre -
Angles of the abutments

Difference of tbe angle's

Log. 10inches - . -
Log. sin. differences of the angles
Log. cosec. angles of the abutments

LQg. distance from the centre -.
Distances from the centre 0
Radius added to the distances from 0
Log. distances from the centre - -
Log. tang. of the angles of the abutments

-
8.8805°47 9.3°5°+38 9'57573r3 9.7768°33 9'9369726

OB = += .°75946 OC= =+ .20185 OD =+ .37647 OE ==+ .59814 OF = + .86491
10'°759+6 10.20185 1°376'1-7 10.5981+ 10.864-91

1.00328 1.00868 1.016°3 1.02p2 1.°3602
9.24298 9.4-1'9°7 9.54-4°° 9.64°91 9.720.°9;~-- -

Log. tang. of the angle of the abutments to radius 10
Tang. of the angle of the abutments to radius 10

0.24626
Inches + 1.763°

0,41.775
+= 26776

°'56°°3
=+ 3.6311

0.66613

+= 46359
°'75611

=+ 5.7°3%

T

When the angle of the abutmcl\t is greater than the angle at the centre, the upper sign prevails. as in Fig. 8) but :when the angl~ at the abutment is less than the angle or
the centre, the lower sign' prevails, as in Fig.

9'
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